若f(x)在I上连续,且在I内有唯一极值点x0,则x0为I上的最值点
函数f(x) 在[a,b]上连续,在(a,b)内有唯一极值点,且为极大值点x0,则函数f(x)在 [a,b]上的最大值为
3.设函数f (x)定义在开区间I上,I,且点(x0,f (x0) )是曲线y= f (x)的拐点,则必有 ( ) A.
设函数f (x)定义在开区间I上,I,且点(x0,f (x0) )是曲线y= f (x)的拐点,则必有( )
证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在
定义:对于区间I内连续可导的函数Y=f(x),若 X0 I,使f(x0)=f,(x0)=0,则称X0为函数Y=f(x)的
如果函数f(x)在点X0处可导,且在X0处的极值,则f1(X0)=多少
高数函数极限 连续 若f(x)在x0的领域内有定义,且f(x0-0)=f(x0+0),则f(x)在x0处是否有极限,是否
对于定义在R上的函数f(X).若实数X0满足f(X0)=X0,则称X0是函数f(X)的一个不动点
对于任意定义在区间D上的函数f(x),若实数x0∈D满足f(x0)=x0,则称x0为函数f(x)在D上的一个不动点.
对于任意定义在区间D上的函数f(x),若实数x0∈D满足f(x0)=x0,则称x0为函数f(x)在D上的一个不动点.
若函数y=f(x)是定域在R上的可导函数,则f'(x0)=0是x0为函数f(x)的极值点的什么条件?
f在[a,b]连续,且有唯一最小值点x0,{xn}为[a,b]中的数列,且{f(xn)}收敛于f(x0),证明{xn}收