设平面薄皮所占的闭区域p由y=(1-x^2)^(1/2);y=0所围成 求该均匀薄片的质心,急,
设平面薄皮所占的闭区域p由y=(1-x^2)^(1/2);y=0所围成 求该均匀薄片的质心
求均匀薄片的质心,薄片所占闭区域为D,D是由y=1-x^2与y=2x^2-5所围成的闭区域,
平面薄片所占区域D是由x+y=2,y=x和x轴所围成,他的面密度p(x,y)为(x,y)到原点距离的平方,求薄片质量M.
平面薄片所占的闭区域D由直线x+y=2,y=x,y=0 所围成,它的面密度u(x,y)=x+2y.
设D是xoy平面上由直线y=1,2x-y+3=0与2x-y-3=0所围成的区域,求∫∫(2x-y)dxdy.
计算由曲线y=x^2与x+y+2所围成的平面区域的面积急
设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy
求由y^2+z^2=px和x=h所围成的均匀立体的质心坐标
设抛物线y^2=2x及直线x=0,y=1所围成区域为D,求D的面积以及求该区域绕y=0旋转所成旋转体的体积
设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概
设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密
设二元随机变量(X,Y)在由x,y轴及直线x+y+1=0所围成的区域上服从均匀分布,求E(X),E(2X-3Y),E(X