作业帮 > 数学 > 作业

试判断:三边长分别为2n*n+2n,2n+1,2n*n+2n+1的三角形是否为直角三角形?

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 08:48:34
试判断:三边长分别为2n*n+2n,2n+1,2n*n+2n+1的三角形是否为直角三角形?
(2n^2+2n)^2+(2n+1)^2
=4n^4+8n^3+4n^2+4n^2+4n+1
=4n^4+8n^3+8n^2+4n+1
=(2n^2+2n+1)^2
所以是直角三角形