作业帮 > 数学 > 作业

证明n^2*(n^2-1)*(n^2-2)除以360的余数是0.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:59:14
证明n^2*(n^2-1)*(n^2-2)除以360的余数是0.
n²(n²-1)(n²-2²)
=(n-2)(n-1)n*n(n+1)(n+2)
这6个数中(n-2) 、(n-1) 、n 、(n+1)、 (n+2)是5个连续的整数,其中必有一个能被5整除
2、(n-2) 、(n-1) 、n 、n 、(n+1)、 (n+2)这6介数中必有二个能被3整除
假设n-2能被3整除,则n+1=n-2+3也能被3整除
假设n-1能被3整除,由n+2也能被3整除
假设n能被3整除,有两个n
因此必有两个能被3整除,
因此=(n-2)(n-1)n*n(n+1)(n+2)能被9整除
类似上面的方法可以得到
(n-2)、(n-1)、n、n、(n+1)、(n+2)必有3个能被8整除
∴(n-2)(n-1)n*n(n+1)(n+2)能被5、9、8整除
即能被360整除