(2014•定安县模拟)已知:如图,△ABC内接于⊙O,点D在半径OB延长线上,∠BCD=∠A=30°.
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/07 16:57:32
(2014•定安县模拟)已知:如图,△ABC内接于⊙O,点D在半径OB延长线上,∠BCD=∠A=30°.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若OC⊥AB,AC=4,求CD的长.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若OC⊥AB,AC=4,求CD的长.
(1)直线CD与⊙O相切.理由如下:
如图,∵∠A=30°,
∴∠COB=2∠A=60°.
又∵OC=OB,
∴△OBC是等边三角形,
∴∠OCB=60°.
又∵∠BCD=30°,
∴∠OCD=∠OCB+∠BCD=90°,即OC⊥CD.
又∵OC是半径,
∴CD是⊙O的切线,即直线CD与⊙O相切;
(2)如图,∵OC⊥AB,
∴AC=BC=4.
∵由(1)知,△OBC是等边三角形,
∴OC=BC=4.
又由(1)知,∠OCD=90°,∠COD=60°,
∴CD=OC•tan60°=4×
3=4
3,即线段CD的长度是4
3.
如图,∵∠A=30°,
∴∠COB=2∠A=60°.
又∵OC=OB,
∴△OBC是等边三角形,
∴∠OCB=60°.
又∵∠BCD=30°,
∴∠OCD=∠OCB+∠BCD=90°,即OC⊥CD.
又∵OC是半径,
∴CD是⊙O的切线,即直线CD与⊙O相切;
(2)如图,∵OC⊥AB,
∴AC=BC=4.
∵由(1)知,△OBC是等边三角形,
∴OC=BC=4.
又由(1)知,∠OCD=90°,∠COD=60°,
∴CD=OC•tan60°=4×
3=4
3,即线段CD的长度是4
3.
已知:如图,△ABC内接于⊙O,点D在半径OB延长线上,∠BCD=∠A=30°.
直线和圆:如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.
三角形ABC内接于圆O,D在半径OB 的延长线上,角BCD=角A=30度,证明cd与圆O 相切
如图,三角形ABC内接于圆0,点D在半径OB的延长线上,角BCD=角A=30度.(1)求直线CD与圆0的位置关系,...
(2010•锦州)如图,已知:△ABC内接于⊙O,点D在OC的延长线上,∠B=∠D=30°.
如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠CAD=30°.
如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度
如图,△ABC内接于⊙O,点D在OC的延长线上,∠B=30°,∠CAD=30°
如图,△ABC为圆O的内接三角形,D是BA延长线上一点,已知∠ACD=∠CBD=45° 若∠BCD=75°,圆O的半径为
如图,已知:△ABC内接与圆O,点D在OC的延长线上,∠B=∠D=30°1)AD是⊙O的切线吗?为什么?
如图,已知△ABC内接于⊙O,点D在OC的延长线上,sinB=1/2,∠CAD=30°.若OD⊥AB,BC=5,求AD的
如图,已知△ABC内 接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O