今晚解出追加50若O是三角形ABC内一点,求证:S三角形OBC·向量OA+S三角形OCA·向量OB+S三角形OBC·向量
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 07:23:01
今晚解出追加50
若O是三角形ABC内一点,求证:S三角形OBC·向量OA+S三角形OCA·向量OB+S三角形OBC·向量OC=0向量
若O是三角形ABC内一点,求证:S三角形OBC·向量OA+S三角形OCA·向量OB+S三角形OBC·向量OC=0向量
这个问题不是很难,但是要讲清楚不是很容易.我跟你将一下吧:你先画一个三角形ABC,中间画一个点O连接OA OB OC.
然后记角BOC=a,角AOB=c,角AOC=b.
S三角形OBC=|OB|*|OC|*sina/2
S三角形OCA=|OA|*|OC|*sinb/2
S三角形OBA=|OB|*|OA|*sinc/2
记向量S三角形OBC·向量OA=向量OA*
S三角形OCA·向量OB=向量OB*
S三角形OBC·向量OC=向量OC*
好了,在图上,把OB沿OA移动到A点,将OC沿OC直线C点移动到O点,现在要证明OA*OB*OC*能组成一个三角形.
|OB*|/|OA*|=sinb/sina=sin(pi-b)/sin(pi-a)
在注意到OB*对的角就是pi-b,OA*对的角就是pi-a.
符合正玄定理,其他的两组也能类似得到,证明了OA*OB*OC*能组成一个三角形.
综上,S三角形OBC·向量OA+S三角形OCA·向量OB+S三角形OBC·向量OC=0向量
然后记角BOC=a,角AOB=c,角AOC=b.
S三角形OBC=|OB|*|OC|*sina/2
S三角形OCA=|OA|*|OC|*sinb/2
S三角形OBA=|OB|*|OA|*sinc/2
记向量S三角形OBC·向量OA=向量OA*
S三角形OCA·向量OB=向量OB*
S三角形OBC·向量OC=向量OC*
好了,在图上,把OB沿OA移动到A点,将OC沿OC直线C点移动到O点,现在要证明OA*OB*OC*能组成一个三角形.
|OB*|/|OA*|=sinb/sina=sin(pi-b)/sin(pi-a)
在注意到OB*对的角就是pi-b,OA*对的角就是pi-a.
符合正玄定理,其他的两组也能类似得到,证明了OA*OB*OC*能组成一个三角形.
综上,S三角形OBC·向量OA+S三角形OCA·向量OB+S三角形OBC·向量OC=0向量
若O是△ABC内一点,求证S△OBC·OA+S△OCA·OB+S△OAB·OC=0 OA OB OC皆为向量
若O是△ABC内一点,求证S△OBC·OA+S△OCA·OB+S△OAB·OC=0
在△ABC内有一点O,已知3倍向量OA+2倍向量OB=x倍向量OC,且S三角形OBC:S三角形ABC=1:3,求x
若O是三角形ABC内一点,满足向量OA+向量OB+向量OC=向量0,求证:O是三角形ABC的重心
若O是三角形内一点且向量OA+向量OB+向量OC=向量零 求证O是三角形ABC的重心!
在三角形ABC中有一点O,使得向量OA+2向量OB+2向量OC=0,则三角形ABC与三角形OBC的面积比是多少?
若点O 在△ABC内,求证:S△OBC·→OA+S△OAC·→OB+S△OAB·→OC=→0.(“→”表示向量)
若O是三角形ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则三角形ABC的形状
三角形ABC内一点O,证明向量OA+向量OB+向量OC等于0向量
平面向量的线性运算O是三角形ABC内一点,满足向量OA+向量OB+向量OC=0,|向量OA|=|向量OB|=|向量OC|
已知O为三角形ABC内的一点,且向量OA加上向量OB加上向量OC等于零,求证O是三角形ABC的重心
若O为△ABC内一点,向量OA*向量OB=向量OB*向量OC=向量OC*向量OA,则O为三角形的什么心