已知等差数列an(n∈N+)中,an+1>an,a2a9=232,a4+a7=37求an通项公式,若将数列an的项重新组
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 15:31:25
已知等差数列an(n∈N+)中,an+1>an,a2a9=232,a4+a7=37求an通项公式,若将数列an的项重新组合为bn,b1=a1,b2=a2+a3,b3=a4+a5+a6+a7依次类推,第n项bn由相应的an中2^n-1项的和组成,求bn-1/4×2^n的前n项和
已知椭园E:x^2/a^2+y^2/b^2=1a>b>0的左焦点F1(-√5,0),若椭园上存在一点D,满足以椭园短轴为直径的圆与线段DF1相切于线段DF1的中点F,求椭园方程,已知Q(-2,0),M(0,1)及椭园G:9x^2/a^2+y^2/b^2=1,过Q作斜率为k的直线l交椭园G于H,K两点,设线段HK的中点为N,连接MN问当k为何值时,直线MN过椭园G的顶点。过 坐标原点O的直线交椭园W:9x^2/a^2+4y^2/b^2=1于PA两点,其中P在第一象线,过P作x轴的垂线,垂足为C,连接AC并延长交椭园W于B,求证:PA⊥PB
已知椭园E:x^2/a^2+y^2/b^2=1a>b>0的左焦点F1(-√5,0),若椭园上存在一点D,满足以椭园短轴为直径的圆与线段DF1相切于线段DF1的中点F,求椭园方程,已知Q(-2,0),M(0,1)及椭园G:9x^2/a^2+y^2/b^2=1,过Q作斜率为k的直线l交椭园G于H,K两点,设线段HK的中点为N,连接MN问当k为何值时,直线MN过椭园G的顶点。过 坐标原点O的直线交椭园W:9x^2/a^2+4y^2/b^2=1于PA两点,其中P在第一象线,过P作x轴的垂线,垂足为C,连接AC并延长交椭园W于B,求证:PA⊥PB
(1)由等差数列an(n∈N+)中,a4+a7=37,得
a2+a9=37① a2a9=232② an+1>an③
由①②③解得,a2=8,a9=29
所以公差d=(a9-a2)/(9-2)=(29-8)/7=3
an通项公式为
an=a2+(n-2)d=8+(n-2)3
=3n+2
(2)设{an}的前n项和为Sn,设{bn-1/4×2^n}的前n项和为Tn则
Sn=a1n+n(n-1)d/2
=5n+3n(n-1)/2
bn=S2^n-1-S2^(n-1)-1=1/4×2^n+9/8×2^2n
bn-1/4×2^n=9/8×4^n
数列{bn-1/4×2^n}是以9/2为首项,以4为公比的等比数列,所以
Tn=9/2(1-4^n)/(1-4)
=3/2(4^n-1)
a2+a9=37① a2a9=232② an+1>an③
由①②③解得,a2=8,a9=29
所以公差d=(a9-a2)/(9-2)=(29-8)/7=3
an通项公式为
an=a2+(n-2)d=8+(n-2)3
=3n+2
(2)设{an}的前n项和为Sn,设{bn-1/4×2^n}的前n项和为Tn则
Sn=a1n+n(n-1)d/2
=5n+3n(n-1)/2
bn=S2^n-1-S2^(n-1)-1=1/4×2^n+9/8×2^2n
bn-1/4×2^n=9/8×4^n
数列{bn-1/4×2^n}是以9/2为首项,以4为公比的等比数列,所以
Tn=9/2(1-4^n)/(1-4)
=3/2(4^n-1)
已知数列An是等比数列,其中A7等于1,且A4,A5+1,A6成等差数列,求An的通项公式及前N项的和?
在数列{an}中,n,an,Sn成等差数列,求数列{an}的通项公式?
求等差数列通项公式已知等差数列An的公差为-1,且a2+a7+a12=-6求数列An的通项公式An与前n项和Sn
数列{an}中,已知a1=2,an+1=an/3an+1(n∈N*),求a2,a3,a4猜想an的通项公式,并给予证明.
已知等差数列{an}中,a1=1,a6+a7=24,求该数列的通项an和前n项和Sn.求
在等差数列{an}中,已知a10=30,a20=50,(1)求数列{an}的通用公式an;(2)若数列{an}的前n项和
已知数列{an}中a1=1,an+1-an=3n,求数列{an}的通项公式.
已知数列{an}的前n项和Sn=12n-n²,求数列{an}的通项公式,(1)证明数列{an}是等差数列.
已知等差数列an满足a2+a4=-6,a3+a5=-2(1)求数列an的通项公式(2)求数列{|an|}的前n项和Tn
已知数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N),求数列{an}的通项公式;设S
已知数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N),求数列{an}的通项公式
设等差数列{an}的前n项和为Sn.已知a4=14 .S10=185.(1)求等差数列{an}的通项公式an.(2) 将