作业帮 > 化学 > 作业

高中化学的一些第三结论?

来源:学生作业帮 编辑:作业帮 分类:化学作业 时间:2024/07/08 11:52:50
高中化学的一些第三结论?
解题思路: 具有惟一性的现象 (1)溶于水显碱性的气体:NH3 (2)空气中由无色变为红棕色气体:N0 (3)在一定条件下能漂白有色物质的淡黄色固Na202 (4)遇SCN-显红色,遇苯酚显紫色,遇OH-生成褐色沉淀:Fe3+ (5)在空气中能自燃的固体物质:白磷 (6)可溶于NaOH溶液的白色沉淀:AI(OH)3 (Zn(OH)2不作要求),可溶于NaOH溶液的金属化物:Al2O3(Zn0不要求) (7)能与NaOH溶液作用产出H2的金属:A1;非金属:Si (8)能与盐酸反应产生刺激性气味气体且通人品红液使之褪色,加热又复原的:SO32-或S2O32- (9)能与新制Cu(OH)2混合加热生成砖红色沉淀酸性物质:甲酸(先碱化) 具有漂白作用的物质与漂白原理 漂白原理:氧化作用 变化类型:化学变化 过程是否可逆:不可逆 常见物质举例:Cl2、O3、Na2O2、NaClO、浓HNO3 漂白原理:化合作用 变化类型:化学变化 过程是否可逆:可逆 常见物质举例:SO2、H2SO3 漂白原理:吸附作用 变化类型:物理变化 过程是否可逆:可逆 常见物质举例:活
解题过程:
解答阿伏加德罗常数问题的试题时,必须注意下列一些细微的知识点: 1.状态问题,如H2O、N2O4在标准状况(0℃,101KPa)时为固态;SO3在标准状况时为固态,常温常压下为液态;HF常温常压下为气态而在标准 状况时为液态;戊烷及碳原子数大于5的低碳烃,在标准状况时为液态或固态。 2.特别物质的摩尔质量,如D2O、T2O、18O2、H37Cl等。 (注:自然界中氢以1H(氕piē,H),2H(氘dāo,D),3H(氚chuān,T)三种同位素的形式存在) 3.某些物质分子中的原子个数,如Ne 、O3、白磷等。 例如稀有气体为单原子分子,臭氧为三原子分子,白磷为四原子分子。 4.某些物质中的化学键数目,如SiO2、P4、CO2 等。 (注:原子晶体是空间立体网状结构的,无限延展,不能说有多少共价键的。) 5.较复杂的化学反应中电子转移的数目,如Na2O2+H2O、Cl2+NaOH、电解AgNO3溶液等。 (注:如Na2O2+H2O(1mol Na2O2转移NA个e-)、1molFe与少量稀硝酸反应转移2NA个e-,与足量稀硝酸反应转移3NA个e-等。) 6.用到22.4L/mol时,必须注意气体是否处于标准状况. 7.某些离子或原子团在水中能发生水解反应,使其数目减少。如Na2S溶液中: n (S2-):n (Na +)﹤1:2 上述7项也往往是命题者有意设置的干扰性因素,并常为学生疏忽之处。 分子中的化学键 双原子分子: (1)非极性键→非极性分子,如H2、Cl2、N2、O2等 (2)极性键→极性分子,如HCl、NO、CO等 多原子分子: (1)都是非极性键→非极性分子,如P4、S8等 (2)有极性键 几何结构对称 a.直线型分子(键角180°)→非极性分子,如CO2、CS2 b.正四面体(键角109°28`)→非极性分子,如CH4、CCl4 几何结构不对称→极性分子, 如H2O(折线型) O NH3(三角锥形)酸式酸根离子的电离与水解的关系: 水解大于电离的酸式酸根:溶液呈碱性 HCO3- HPO42- HS- 电离大于水解的酸式酸根:溶液呈酸性 HSO3- H2PO4- 只电离不水解的酸式酸根: HSO4- 物质颜色的变化总结: Fe(OH)2沉淀在空气中的现象:白色→(迅速)灰绿色→(最终)红褐色 pH试纸:干燥时呈黄色;中性时呈淡绿色;酸性时呈红色,酸性越强,红色越深;碱性时呈蓝色,碱性越强,蓝色越深。 红色石蕊试纸:红色(用于检验碱性物质) 蓝色石蕊试纸:蓝色(用于检验酸性物质) 淀粉试纸:白色(用于检验碘单质) KI—淀粉试纸:白色(用于检验氧化性物质) 石蕊:pH<5时呈红色;pH介于5~8时呈紫色;pH>8时呈蓝色。 酚酞:pH<8.2时呈无色;pH介于8.2~10时呈粉红色;pH>10时呈红色。 甲基橙: pH<3.1时呈红色;pH介于3.1~4.4时呈橙色;pH>4.4时呈黄色。 甲基红: pH<4.4时呈红色;pH介于4.4~6.2时呈橙色;pH>6.2时呈黄色。 重要物质的用途 1.干冰、AgI晶体——人工降雨剂 2.AgBr——照相感光剂 3.K、Na合金(l)——原子反应堆导热剂 4.铷、铯——光电效应 5.钠——很强的还原剂,制高压钠灯 6.NaHCO3、Al(OH)3——治疗胃酸过多,NaHCO3还是发酵粉的主要成分之一 7.Na2CO3——广泛用于玻璃、制皂、造纸、纺织等工业,也可以用来制造其他钠的化合物 8.皓矾——防腐剂、收敛剂、媒染剂 9.明矾——净水剂 10.重晶石——“钡餐” 11.波尔多液——农药、消毒杀菌剂 12.SO2——漂白剂、防腐剂、制H2SO4 13.白磷——制高纯度磷酸、燃烧弹 14.红磷——制安全火柴、农药等 15.氯气——漂白(HClO)、消毒杀菌等 16.Na2O 2——漂白剂、供氧剂、氧化剂等 17.H2O2——氧化剂、漂白剂、消毒剂、脱氯剂、火箭燃料等 18.O3——漂白剂(脱色剂)、消毒杀菌剂、吸收紫外线(地球保护伞) 19.石膏——制模型、水泥硬化调节剂、做豆腐中用它使蛋白质凝聚(盐析); 20.苯酚——环境、医疗器械的消毒剂、重要化工原料 21.乙烯——果实催熟剂、有机合成基础原料 22.甲醛——重要的有机合成原料;农业上用作农药,用于制缓效肥料;杀菌、防腐,35%~40%的甲醛溶液用于浸制生物标本等 23.苯甲酸及其钠盐、丙酸钙等——防腐剂 24.维生素C、E等——抗氧化剂 25.葡萄糖——用于制镜业、糖果业、医药工业等 26.SiO2纤维——光导纤维(光纤),广泛用于通讯、医疗、信息处理、传能传像、遥测遥控、照明等方面。 27.高分子分离膜——有选择性地让某些物质通过,而把另外一些物质分离掉。广泛应用于废液的处理及废液中用成分的回收、海水和苦咸水的淡化、食品工业、氯碱工业等物质的分离上,而且还能用在各种能量的转换上等等。 28.硅聚合物、聚氨酯等高分子材料——用于制各种人造器官 29.氧化铝陶瓷(人造刚玉)——高级耐火材料,如制坩埚、高温炉管等;制刚玉球磨机、高压钠灯的灯管等。 30.氮化硅陶瓷——超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应,抗腐蚀能力强,高温时也能抗氧化,而且也能抗冷热冲击。常用来制造轴承、汽轮机叶片、机械密封环、永久性模具等机械构件;也可以用来制造柴油机。 31.碳化硼陶瓷——广泛应用在工农业生产、原子能工业、宇航事业等方面。 元素周期律——构、位、性的规律与例外 1.一般原子的原子核是由质子和中子构成,但氕原子(1H)中无中子。 2.元素周期表中的每个周期不一定从金属元素开始,如第一周期是从氢元素开始。 3.大多数元素在自然界中有稳定的同位素,但Na、F、P、Al等20种元素到目前为却未发现稳定的同位素。 4.一般认为碳元素形成的化合物种类最多,且ⅣA族中元素组成的晶体常常属于原子晶体,如金刚石、晶体硅、二氧化硅、碳化硅等。(据有些资料说,氢元素形成的化合物最多) 5.元素的原子序数增大,元素的相对原子质量不一定增大,如18Ar的相对原子质量反而大于19K的相对原子质量。 6.质量数相同的原子,不一定属于同种元素的原子,如18O与18F、40K与40Ca 7.ⅣA~ⅦA族中只有ⅦA族元素没有同素异形体,且其单质不能与氧气直接化合。 8.活泼金属与活泼非金属一般形成离子化合物,但AlCl3却是共价化合物(熔沸点很低,易升华,为双聚分子,结构式为所有原子都达到了最外层为8个电子的稳定结构)。 9.一般元素性质越活泼,其单质的性质也活泼,但N和P相反。 10.非金属元素之间一般形成共价化合物,但NH4Cl、NH4NO3等却是离子化合物。 11.离子化合物在一般条件下不存在单个分子,但在气态时却是以单个分子存在。 12.含有非极性键的化合物不一定都是共价化合物,如Na2O2、FeS2、CaC2等是离子化合物。 13.单质分子不一定是非极性分子,如O3是极性分子。 14.一般氢化物中氢为+1价,但在金属氢化物中氢为-1价,如NaH、CaH2等。 15.非金属单质一般不导电,但石墨可以导电。 16.非金属氧化物一般为酸性氧化物,但CO、NO等不是酸性氧化物,而属于不成盐氧化物。 17.金属氧化物一般为碱性氧化物,但一些高价金属的氧化物反而是酸性氧化物,如:Mn2O7、CrO3等反而属于酸性氧物,2KOH + Mn2O7 == 2KMnO4 + H2O 2KOH + CrO3 == K2CrO4 + H2O;Na2O2、MnO2等也不属于碱性氧化物,它们与酸反应时显出氧化性。 18.组成和结构相似的物质(分子晶体),一般分子量越大,熔沸点越高,但也有例外,如HF>HCl,H2O>H2S,NH3>PH3,因为液态及固态HF、H2O、NH3分子间存在氢键,增大了分子间作用力。 19.非金属元素的最高正价和它的负价绝对值之和等于8,但氟无正价,氧在OF2中为+2价。 20.含有阳离子的晶体不一定都含有阴离子,如金属晶体中有金属阳离子而无阴离子。 21.一般元素的化合价越高,其氧化性越强,但HClO4、HClO3、HClO2、HClO的氧化性逐渐增强。 22.离子晶体不一定只含有离子键,如NaOH、Na2O2、NH4Cl、CH3COONa等中还含有共价键。 微粒半径大小的比较方法 1.原子半径的大小比较,一般依据元素周期表判断。若是同周期的,从左到右,随着核电荷数的递增,半径逐渐减小;若是同主族的,从上到下,随着电子层数增多,半径依次增大。 2.若几种微粒的核外电子排布相同,则核电荷数越多,半径越小。 3.同周期元素形成的离子中阴离子半径一定大于阳离子半径,因为同周期元素阳离子的核外电子层数一定比阴离子少一层。 4.同种金属元素形成的不同金属离子,其所带正电荷数越多(失电子越多),半径越小。 ☆判断微粒半径大小的总原则是: 1.电子层数不同时,看电子层数,层数越多,半径越大; 2.电子层数相同时,看核电荷数,核电荷数越多,半径越小; 3.电子层数和核电荷数均相同时,看电子数,电子数越多,半径越大;如r(Fe2+)> r(Fe3+) 4.核外电子排布相同时,看核电荷数,核电荷数越多,半径越小; 5.若微粒所对应的元素在周期表中的周期和族既不相同又不相邻,则一般难以直接定性判断其半径大小,需要查找有关数据才能判断。 环境污染 1.臭氧层空洞——大气平流层中的臭氧层被氟里昂等氟氯烃的破坏而减少或消失,使地球生物遭 受紫外线的伤害。 2.温室效应——大气中二氧化碳、甲烷等温室气体增多,造成地球平均气温上升,加速了水的循环,致使自然灾害频繁发生。 3.光化学烟雾——空气中的污染性气体氮的氧化物在紫外线照射下,发生一系列光化学反应而生成有毒的光化学烟雾。空气中氮的氧化物主要来自石油产品和煤燃烧的产物、汽车尾气以及制硝酸工厂的废气等。 4.赤潮——海水富营养化(含N、P、K等污水的任意排放)污染,使海藻大量繁殖,水质恶化。 5.水华——淡水富营养化(含N、P、K等污水的任意排放)污染,使水藻大量繁殖,水质恶化。 6.酸雨——空气中硫、氮的氧化物在氧气和水的共同作用下形成酸雾随雨水下降,其pH通常小于5.6。空气中SO2主要来自化石燃料的燃烧,以及含硫矿石的冶炼和硫酸、磷肥、纸浆生产的工业废气。 7.汽车尾气——主要是由汽油不完全燃烧产生的CO、气态烃等以及气缸中的空气在放电条件下产生的氮的氧化物等,它是城市大气污染或造成光化学烟雾的主要原因。 8.室内污染——由化工产品如油漆、涂料、板材等释放出的甲醛(HCHO)气体;建筑材料产生的放射性同位素氡(Rn);家用电器产生的电磁幅射等。 9.食品污染——指蔬菜、粮食、副食品等在生产、贮存、运输、加工的过程中,农药、化肥、激素、防腐剂(苯甲酸及其钠盐等)、色素、增白剂(“吊白块”、大苏打、漂粉精)、调味剂等,以及转基因技术的不恰当使用所造成的污染。
最终答案:略