椭圆x^2/4+y^/3=1,p是椭圆上动点,Q(0,1/2),求PQ最大值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 07:34:40
椭圆x^2/4+y^/3=1,p是椭圆上动点,Q(0,1/2),求PQ最大值
设椭圆上的点为(2cosa,√3sina)
PQ^2=(2cosa)^2+(√3sina-1/2)^2
=4cos^2a+3sin^2a-√3sina+1/4
=4-sin^2a-√3sina+1/4
=17/4-(sin^2a+√3sina+3/4-3/4)
=5-(sina+√3/2)^2
因此最大值是当
sina=-√3/2时,为5
再问: 为什么设椭圆上的点为(2cosa,√3sina)?
再答: 这是椭圆的参数方程表示形式。
再问: 汗……这个还没学……可以换种方法么……
再答: 这种方法是唯一正确的方法。 椭圆的标准方程是x^2/a^2+y^2/b^2=1 参数方程就是x=acost,y=bsint
PQ^2=(2cosa)^2+(√3sina-1/2)^2
=4cos^2a+3sin^2a-√3sina+1/4
=4-sin^2a-√3sina+1/4
=17/4-(sin^2a+√3sina+3/4-3/4)
=5-(sina+√3/2)^2
因此最大值是当
sina=-√3/2时,为5
再问: 为什么设椭圆上的点为(2cosa,√3sina)?
再答: 这是椭圆的参数方程表示形式。
再问: 汗……这个还没学……可以换种方法么……
再答: 这种方法是唯一正确的方法。 椭圆的标准方程是x^2/a^2+y^2/b^2=1 参数方程就是x=acost,y=bsint
过椭圆x^2+2y=2的一个焦点F(-1,0)作一直线交椭圆于P、Q两点(1)求|PQ|的最大值和最小值
点P在圆x^2+(y-2)^2=1/4上移动,点Q在椭圆x^2+4y^2=4上移动,求PQ的最大值及Q点的坐标.
已知P点在圆x2+(y-4)2=1上移动,Q点有椭圆上移动,Q点在椭圆上移动,试求|PQ|的最大值.
直线y=x+1交椭圆x^2/a^2+Y^2/b^2=1于P,Q两点,PQ的距离是2(根号)10,op垂直于OQ,求椭圆的
已知点P在圆C:x^2+(y-4)^2上移动,点Q在椭圆1/4x^2+y^2=1上移动,求/PQ/最大值
一道关于椭圆的题!已知椭圆x^2/25+y^/16=1,F1是左焦点,过F1作直线与椭圆交与P,Q两点,求PQ中点的轨迹
直线l与椭圆x^2/4+y^2=1交于p,q两点 已知l过定点(1,0),则弦pq中点轨迹方程是 但求大神给过
已知椭圆x^2+2y^2=1,点A(-1,0).过A点做直线交椭圆于P,Q.求证:PQ恒过定点
已知P点在圆x^2+(y-2)^2=1上移动,Q点在椭圆x^2/9+y^2=1上移动,则|pq|的最大值是
直线l与椭圆x^2/4+y^2=1交于p,q两点,已知l的斜率为1,求pq中点轨迹方程
椭圆方程为x^2/4+y^2=1 设直线l:y=x+m,若l与椭圆交于P,Q两点,且PQ距离为2,求m值
已知椭圆方程y^2/2+x^2=1,直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与x轴相交于M,求