an=(2n+1)*2^n,求Sn
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 18:07:42
an=(2n+1)*2^n,求Sn
错位相减
a1=3*2^1
a2=5*2^2
.
an=(2n+1)*2^n
Sn=3*2^1+5*2^2+.+(2n+1)*2^n
2Sn= 3*2^2+5*2^3+.+(2n-1)*2^n+(2n+1)*2^(n+1)
2Sn-Sn=-3*2^1-2*2^2-2*2^3-.-2*2^n+(2n+1)*2^(n+1)
Sn=-2^1-2*2^1-2*2^2-2*2^3-.-2*2^n+(2n+1)*2^(n+1)
Sn=-2(1+2^1+2^2+2^3+.+2^n)+(2n+1)*2^(n+1)
Sn=-2*1*(1-2^(n+1))/(1-2)+(2n+1)*2^(n+1)
Sn=2*(1-2^(n+1))+(2n+1)*2^(n+1)
Sn=2-2*2^(n+1)+(2n+1)*2^(n+1)
Sn=2+(2n-1)*2^(n+1)
a1=3*2^1
a2=5*2^2
.
an=(2n+1)*2^n
Sn=3*2^1+5*2^2+.+(2n+1)*2^n
2Sn= 3*2^2+5*2^3+.+(2n-1)*2^n+(2n+1)*2^(n+1)
2Sn-Sn=-3*2^1-2*2^2-2*2^3-.-2*2^n+(2n+1)*2^(n+1)
Sn=-2^1-2*2^1-2*2^2-2*2^3-.-2*2^n+(2n+1)*2^(n+1)
Sn=-2(1+2^1+2^2+2^3+.+2^n)+(2n+1)*2^(n+1)
Sn=-2*1*(1-2^(n+1))/(1-2)+(2n+1)*2^(n+1)
Sn=2*(1-2^(n+1))+(2n+1)*2^(n+1)
Sn=2-2*2^(n+1)+(2n+1)*2^(n+1)
Sn=2+(2n-1)*2^(n+1)
已知an=1/2n(n+1),求Sn
An=n×2^(n-1),求Sn
an=(2^n-1)n,求Sn
已知an=(2n+1)*3^n,求Sn
在数列{an}中,an=1/n(n+1)(n+2),求Sn的极限
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
Sn是数列an的前n项和,an=1/n(n+2),求Sn
已知数列an=n^2-n+2,求Sn
数列{an}前n项和为Sn,对一切正整数n都有Sn=n+(1/2)an,求an,Sn
数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn
An=n^2/2^(n-1) 求前n项和Sn?
已知a1=1,Sn=n^2an 求:an及Sn