Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 17:57:16
Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]
求和
求和
Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]
=1/(2+1)(2-1)+1/(4+1)(4-1)+1/(6+1)(6-1)+.+1/(2n+1)(2n-1)
=1/(3*1)+1/(5*3)+1/(7*5)+.+1/(2n+1)(2n-1)
因为1/(2n+1)(2n-1)=0.5*[1/(2n-1)-1/(2n+1)]
所以
Sn=0.5*[1-1/3+1/3-1/5+1/5-1/7+.+1/(2n-1)-1/(2n+1)]
=0.5*[1-1/(2n +1 )]
=n/(2n+1)
=1/(2+1)(2-1)+1/(4+1)(4-1)+1/(6+1)(6-1)+.+1/(2n+1)(2n-1)
=1/(3*1)+1/(5*3)+1/(7*5)+.+1/(2n+1)(2n-1)
因为1/(2n+1)(2n-1)=0.5*[1/(2n-1)-1/(2n+1)]
所以
Sn=0.5*[1-1/3+1/3-1/5+1/5-1/7+.+1/(2n-1)-1/(2n+1)]
=0.5*[1-1/(2n +1 )]
=n/(2n+1)
Sn=3+2^n Sn-1=3+2^(n-1).则Sn-Sn-1=?
已知等差数列{an}的前n项和为Sn,且(2n-1)Sn+1 -(2n+1)Sn=4n²-1(n∈N*)
1+2+3+4+.+n,求Sn
数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式
Sn=n(n+2)(n+4)的分项等于1/6[n(n+2)(n+4)(n+5)-(n-1)n(n+2)(n+4)]吗?
已知数列{an}的前n项和为Sn=1+2+3+4+…+n,求f(n)= Sn /(n+32)Sn+1的最大值
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
(1).Sn=1+2×3+3×7...n(2^n-1),求Sn.
已知an=1/2n(n+1),求Sn
数列求和:Sn=1/1*2*3+1/2*3*4+.+1/n*(n+1)*(n+2) 求Sn
数列Sn=(3n+1)/2-(n/2)an
已知Sn=1/2n(n+1),Tn=S1+S2+S3+.+Sn,求Tn.