X3+6X2+8X=1680,
证明:(x3+5x2+4x-1)-(-x2-3x+2x3-3)+(8-7x-6x2+x3)的值与x无关.
x1+x3+x4=7 x2+x3+x4=6 x2+x1+x4=8 x2+x1+x3=9 求x1 x2 x3 x4 是多少
x4+5x3+5x2+5x-6=0
解方程x3-x2-5x+6=0
用列主元Gauss消元法解线性方程组{-x2-x3+x4=0,x1-x2+x3-3x4=1,2x1-2x2-4x3+6x
关于二元一次方程组若X1,X2,X3,X4,X5满足下列方程组:2X1+X2+X3+X4+X5=6X1+2X2+X3+X
化简并求值:3x3-[x3+(6x2-7x)]-2(x3-3x2-4x)其中x=-1.
先化简,再求值:3x3-[x3+(6x2-7x)]-2(x3-3x2-4x),其中x=13
分解因式 x3+x2+x-3 x3-6x2+11x-6 x4+x3-7x2-x+6
若x3-6x2+11x-6=(x-1)(x2+mx+n),求:
已知x2+x+1=0则x3+2x2+2x-6=
已知x2-3x-1=0求x3-3x2-11x+8的值