如图延长圆O的直径BA到P,使PA=1\2 AB 作割线PCD交圆O于C,D 连接AC,BD 若AC=DC 则tanB=
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 02:08:46
如图延长圆O的直径BA到P,使PA=1\2 AB 作割线PCD交圆O于C,D 连接AC,BD 若AC=DC 则tanB=
连 OC、DA、BC.
∵ PA = (1/2)AB
∴ PA = OA = OB = OC
∴ PO :PB = 2 :3
∵ BA 是圆O的直径
∴ ∠BDA = 90°
∵ AC = DC
∴ 弧AC = 弧DC
∴ ∠DBC = ∠CBA
又∵ ∠OCB = ∠CBA
∴ ∠DBC = ∠OCB
∴ BD ‖ OC
∴ △PCO ∽ △PDB
∴OC :BD = PO :PB = 2 :3
∴ BD = (3/2)OC
∴ BD的平方 = (9/4)× OC的平方
在Rt△BDA 中,∵ BD的平方 + DA的平方 = BA的平方
∴ DA的平方 = BA的平方 -- BD的平方
= (2×OC)的平方 -- (9/4)× OC的平方
= (7/4)× OC的平方
∴ DA的平方 / BD的平方 = [(7/4)× OC的平方 ] / [ (9/4)× OC的平方 ]
= 7/9
∴ DA :DB = √7 :3
∴tanB=DA :DB = √7 :3
∵ PA = (1/2)AB
∴ PA = OA = OB = OC
∴ PO :PB = 2 :3
∵ BA 是圆O的直径
∴ ∠BDA = 90°
∵ AC = DC
∴ 弧AC = 弧DC
∴ ∠DBC = ∠CBA
又∵ ∠OCB = ∠CBA
∴ ∠DBC = ∠OCB
∴ BD ‖ OC
∴ △PCO ∽ △PDB
∴OC :BD = PO :PB = 2 :3
∴ BD = (3/2)OC
∴ BD的平方 = (9/4)× OC的平方
在Rt△BDA 中,∵ BD的平方 + DA的平方 = BA的平方
∴ DA的平方 = BA的平方 -- BD的平方
= (2×OC)的平方 -- (9/4)× OC的平方
= (7/4)× OC的平方
∴ DA的平方 / BD的平方 = [(7/4)× OC的平方 ] / [ (9/4)× OC的平方 ]
= 7/9
∴ DA :DB = √7 :3
∴tanB=DA :DB = √7 :3
如图,AB是圆O的直径,BD是圆O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE垂直于AC,垂足为点E
AB圆O的直径,BD是圆O的弦,延长BD到点C,使DC=BD,连接AC交圆O于点F
如图,AB是圆O的直径,BD是圆O的弦,延长BD到点C,使BD=DC,连接AC,过点D作DE⊥AC,垂足为E
如图 AB是圆o的直径,BD是圆O的弦,延长BD到点C,使DC=BD,连接AC交圆O于点F
已知P是圆O直径AB延长线上的一点,割线PCD交圆O于C,D两点,弦DF垂直AB于点H,CF交AB于点E.求证PA*PB
如图 BD是直径 过点O上一点A作点O切线交DB延长线于P 过B点作BC平行PA交点O于C 连接AB AC求证AB=AC
如图,AB为圆O直径,割线PCD交圆O于C,D,角PAC=角PDA
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
如图,已知在△ABC中,AB=AC,以AB为直径作⊙O交BC于F,连接OC交⊙O于D,连接BD并延长交AC于E,BC=2
如图AE是圆O直径D是圆O一点连接AD并延长使AD=DC,连接CE交圆O于点B,连接AB,过点E的直线与AC的延长线
如图,BD为圆O的直径,弦AC⊥BD于点E,BA和CD的延长线交于点P,求证:(1)AB=BC,(2)CD.PC=PA.
如图,以三角形ABC的边AB为直径作圆O,交BC于点D,交AC于点E,BD=DC