作业帮 > 数学 > 作业

如图,在三角形ABC中,角ACB=角ABC,延长AB到点D,使BD=AB,取AB的中点E连接CD和CE,求证CD=2CE

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 23:02:33
如图,在三角形ABC中,角ACB=角ABC,延长AB到点D,使BD=AB,取AB的中点E连接CD和CE,求证CD=2CE
图为已C为顶点连接CA CE CB CD且AEBD在一条直线上
延长CE至F,使EF=CE,连接FA
因为 AE=BE,角AEF=角BEC
所以 三角形AEF全等于三角形BEC
所以 角F=角FCB
所以 AF//BC
所以 角FAC=180-角ACB
因为 角DBC=180-角ABC,角ACB=角ABC
所以 角FAC=角DBC
因为 三角形AEF全等于三角形BEC
所以 FA=BC
因为 角ACB=角ABC
所以 AB=AC
因为 BD=AB
所以 AC=BD
因为 FA=BC,角FAC=角DBC
所以 三角形FAC全等于三角形DBC
所以 CD=CF
因为 FE=CE
所以 CD=2CE