设数列an的前n项和为Sn,满足an+Sn=An^2+Bn+1(A不等于0),a1=3/2,a2=9/4,求证an-n为
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 04:59:47
设数列an的前n项和为Sn,满足an+Sn=An^2+Bn+1(A不等于0),a1=3/2,a2=9/4,求证an-n为等比数列并求an
解析:当n=1时,a1+S1=A+B+1;即A+B=2;
当n=2时,a2+S2=2a2+a1=2*9/4+3/2=6=4A+2B+1,即4A+2B=5
联立以上两式,可得A=1/2,B=3/2.
由题意:an+Sn=An^2+Bn+1 ①
则a(n+1)+S(n+1)=A(n+1)^2+B(n+1)+1 ②
②-①,可得:
a(n+1)-an+a(n+1)=A(2n+1)+B=n+2
2a(n+1)-an=n+2
2a(n+1)-2(n+1) = an -n
2[a(n+1)-(n+1)]=an -n
即:[a(n+1)-(n+1)]/(an -n) =1/2
由等比数例定义可知,{an-n}为以a1-1=1/2,q=1/2的等比数列.
an-n = (1/2)^n
an = n+ (1/2)^n
当n=2时,a2+S2=2a2+a1=2*9/4+3/2=6=4A+2B+1,即4A+2B=5
联立以上两式,可得A=1/2,B=3/2.
由题意:an+Sn=An^2+Bn+1 ①
则a(n+1)+S(n+1)=A(n+1)^2+B(n+1)+1 ②
②-①,可得:
a(n+1)-an+a(n+1)=A(2n+1)+B=n+2
2a(n+1)-an=n+2
2a(n+1)-2(n+1) = an -n
2[a(n+1)-(n+1)]=an -n
即:[a(n+1)-(n+1)]/(an -n) =1/2
由等比数例定义可知,{an-n}为以a1-1=1/2,q=1/2的等比数列.
an-n = (1/2)^n
an = n+ (1/2)^n
设数列{an}的前n项和为Sn,并且满足2Sn=an²+n,an>0.(1)求a1,a2,a3.(2)猜想{a
设数列{An}的前n项和为Sn,且满足Sn=2An-3n,n=1,2,3……(1)设Bn=An+3,求证:数列{Bn}是
已知数列{an}的前n项和为Sn,a1=1,a(n+1)=1+2Sn.设bn=n/an,求证:数列{bn}的前n项和Tn
数列{An}满足A1=1,An+1=An/2An+1 数列Bn的前n项和为Sn=12-12(2/3)n
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
设数列an中的前n项的和为Sn,并且a1=1,Sn+1=4an+2.设bn=A(n+1)-2an,求证bn是等比数列
已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2
设数列an中的前n项的和为Sn,并且a1=1,Sn+1=4an+2,设bn=an比2的n次方,求证数列bn为等差数列
已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,设Bn=n/Sn-n+2前N项和为Tn 求证Tn
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列