已知椭圆5x2+9y2=45,椭圆的右焦点为F,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:07:55
已知椭圆5x2+9y2=45,椭圆的右焦点为F,
(1)求过点F且斜率为1的直线被椭圆截得的弦长;
(2)判断点A(1,1)与椭圆的位置关系,并求以A为中点椭圆的弦所在的直线方程.
(1)求过点F且斜率为1的直线被椭圆截得的弦长;
(2)判断点A(1,1)与椭圆的位置关系,并求以A为中点椭圆的弦所在的直线方程.
(1)由题意可得:过点F且斜率为1的直线方程为y=x-2,
联立直线与椭圆的方程可得:14x2-36x-9=0,
∴x1+x2=
18
7,x1•x2=-
9
14,
由弦长公式可得:|MN|=
1+1•
(
18
7)2+
36
14=
30
7
(2)设以A(1,1)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),
∵A(1,1)为EF中点,
∴x1+x2=2,y1+y2=2,
把E(x1,y1),F(x2,y2)分别代入椭圆5x2+9y2=45,
得5x12+9y12=45,5x22+9y22=45
∴5(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,
∴10(x1-x2)+18(y1-y2)=0,
∴k=
y1−y2
x1−x2=-
5
9,
∴以A(1,1)为中点椭圆的弦所在的直线方程为:y-1=-
5
9(x-1),
整理,得5x+9y-14=0.
联立直线与椭圆的方程可得:14x2-36x-9=0,
∴x1+x2=
18
7,x1•x2=-
9
14,
由弦长公式可得:|MN|=
1+1•
(
18
7)2+
36
14=
30
7
(2)设以A(1,1)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),
∵A(1,1)为EF中点,
∴x1+x2=2,y1+y2=2,
把E(x1,y1),F(x2,y2)分别代入椭圆5x2+9y2=45,
得5x12+9y12=45,5x22+9y22=45
∴5(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,
∴10(x1-x2)+18(y1-y2)=0,
∴k=
y1−y2
x1−x2=-
5
9,
∴以A(1,1)为中点椭圆的弦所在的直线方程为:y-1=-
5
9(x-1),
整理,得5x+9y-14=0.
已知椭圆C;x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),且点(-1,根号2/2)在椭圆上,
求过椭圆x2/4+y2/9=1的下焦点且斜率为2的直线该椭圆所得的弦长 已知斜率为1的直线L过椭圆x2+y2=1的右焦点
已知一动圆与直线x=-2相切且经过椭圆x2/9+y2/5=1的右焦点F求动圆圆心轨迹方程
如图,已知椭圆C:x2/16+y2/12=1的左、右顶点分别为A、B,右焦点为F,直线l为椭圆的右准线.
如图,已知椭圆C:x2/16+y2/12=1的左,右顶点分别为A,B,右焦点为F,直线l为椭圆的右准线
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,点F为椭圆的右焦点,点A、B分别为椭圆的左右顶点
已知椭圆x2/a2 y2/b2=1(a>b>0)的左焦点为F
已知椭圆x2/4+y2/3=1,设F是椭圆的右焦点,m是椭圆上的一点,以m为圆心,mf为半径作圆m
已知椭圆x2比9加y2比8等于1,F为右焦点,P(1,1)为椭圆内一点,M是椭圆上一点,则|MP|加3|MF|的最小值是
已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点,
已知椭圆x2/4+y2/3=1内有一点P(1,-1)F为右焦点M是椭圆上一个动点求MP+MF最小
已知椭圆x2/100+y2/36=1上一点P到椭圆左焦点的距离为7,求P到右焦点的距离.