如图 ,f为抛物线y^2=2px的焦点,a(4,2)为抛物线内一定点,p为抛物线上一动点且pa+pf最小值为8,如果过f
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 00:32:24
如图 ,f为抛物线y^2=2px的焦点,a(4,2)为抛物线内一定点,p为抛物线上一动点且pa+pf最小值为8,如果过f的直线交抛物线于m,n2点,且mn>=32,求直线L的倾斜角的取值范围
y^2=2px
焦点为F(p/2,0),准线为:x=-p/2
P为抛物线上的一动点,过P作PQ//x轴交准线于Q
则:PF=PQ
所以,PA+PF=PA+PQ≥AQ
所以,A、P、Q同一直线时,PA+PF的值最小
最小值=A的横坐标-Q的横坐标=4+p/2
所以,4+p/2=8
p=8
所以,抛物线方程为:y^2=16x,焦点F(4,0).
设过F的直线方程是y=k(x-4),代入得到:k^2(x^2-8x+16)-16x=0
即有k^2x^2-(8k^2+16)x+16k^2=0
MN=x1+x2+p=(8k^2+16)/k^2+8=8+16/k^2+8>=32
16/k^2>=16
k^2
焦点为F(p/2,0),准线为:x=-p/2
P为抛物线上的一动点,过P作PQ//x轴交准线于Q
则:PF=PQ
所以,PA+PF=PA+PQ≥AQ
所以,A、P、Q同一直线时,PA+PF的值最小
最小值=A的横坐标-Q的横坐标=4+p/2
所以,4+p/2=8
p=8
所以,抛物线方程为:y^2=16x,焦点F(4,0).
设过F的直线方程是y=k(x-4),代入得到:k^2(x^2-8x+16)-16x=0
即有k^2x^2-(8k^2+16)x+16k^2=0
MN=x1+x2+p=(8k^2+16)/k^2+8=8+16/k^2+8>=32
16/k^2>=16
k^2
抛物线的题目已知抛物线Y^2=2px上一动点p,抛物线内一点A(3,2)F为焦点且丨PA丨+丨PF丨的最小值为7/2求抛
已知抛物线y^2=2px(p>0)上一动点P ,抛物线内一点A(3,2) ,F为焦点且|PA|+|PF|的最小值为7/2
已知点P(6,y)在抛物线 y^2=2px(p>0)上,F为抛物线焦点,若 PF=8,则点F到抛物线
设抛物线y^2=2px(p>0)的焦点为F,点P是抛物线上任意一点 (1)求绝对值PF的最小值
F为抛物线Y平方等于2PX的焦点,以A(4,2)为抛物线内的一定点,P为抛物线
已知抛物线x2=4y的焦点F和点A(-1,8),P为抛物线上一点,则|PA|+|PF|的最小值是( )
若点A(3,2)在抛物线Y²=2X内,F为抛物线的焦点,点P在抛物线上移动,当|PA|+|PF|取最小值时,点
若点p在以f为焦点的抛物线y^2=2px(p>0)上,且PF⊥FO,|PF|=2,O为原点
设P为抛物线y^2=8x上任一点,F为焦点,点A的坐标为(3,1),求|PA|+|PF|的最小值.
已知抛物线y^2=6x,定点A(2,3),F为抛物线的焦点,P为抛物线上的一个动点,则PF的模加PA的模的最小值为
设P是抛物线y^2=x上的一点,焦点为F,点A(3,-1),则|PF|+|PA|的最小值为________
已知点P在抛物线x^2=4y上运动,F为抛物线的焦点,点A的坐标(2,3),求PA+PF的最小值及此时点P的坐标