如图,F为抛物线y2=2px的焦点,A(4,2)为抛物线内一定点,P为抛物线上一动点,且|PA|+|PF|的最小值为8.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 07:32:23
如图,F为抛物线y2=2px的焦点,A(4,2)为抛物线内一定点,P为抛物线上一动点,且|PA|+|PF|的最小值为8.
(1)求该抛物线的方程;
(2)如果过F的直线l交抛物线于M、N两点,且|MN|≥32,求直线l的倾斜角的取值范围.
(1)求该抛物线的方程;
(2)如果过F的直线l交抛物线于M、N两点,且|MN|≥32,求直线l的倾斜角的取值范围.
(1)设P点到抛物线的准线x=-
p
2的距离为d,
由抛物线的定义知d=|PF|,
∴(|PA|+|PF|)min=(|PA|+d)min=
p
2+4,
∴
p
2+4=8⇒p=8,
∴抛物线的方程为y2=16x.…(6分)
(2)由(1)得F(4,0),设直线l的方程为y=k(x-4),显然k≠0.设M(x1,y1),N(x2,y2),
把直线方程代入抛物线,得k2x2-(8k2+16)x+16k2=0,
x1+x2=
8k2+16
k2,x1•x2=16,
∴|MN|=
1+k2×
(x1+x2)2−4x1x2
=
1+k2×
(
8k2+16
k2)2−64=
1+k2×
p
2的距离为d,
由抛物线的定义知d=|PF|,
∴(|PA|+|PF|)min=(|PA|+d)min=
p
2+4,
∴
p
2+4=8⇒p=8,
∴抛物线的方程为y2=16x.…(6分)
(2)由(1)得F(4,0),设直线l的方程为y=k(x-4),显然k≠0.设M(x1,y1),N(x2,y2),
把直线方程代入抛物线,得k2x2-(8k2+16)x+16k2=0,
x1+x2=
8k2+16
k2,x1•x2=16,
∴|MN|=
1+k2×
(x1+x2)2−4x1x2
=
1+k2×
(
8k2+16
k2)2−64=
1+k2×
抛物线的题目已知抛物线Y^2=2px上一动点p,抛物线内一点A(3,2)F为焦点且丨PA丨+丨PF丨的最小值为7/2求抛
已知抛物线y^2=2px(p>0)上一动点P ,抛物线内一点A(3,2) ,F为焦点且|PA|+|PF|的最小值为7/2
点A(3,2)为定点,点F是抛物线y2=4x的焦点,点P在抛物线y2=4x上移动,若|PA|+|PF|取得最小值,则点P
(2013•浙江模拟)已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.
已知抛物线y2=4X的焦点为F,点A(2,2),抛物线上求一点P,使得PA(绝对值)+PF(绝对值)最小
已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),则|PA|+|PF|取最小值时P点的坐标为__
已知抛物线x2=4y的焦点F和点A(-1,8),P为抛物线上一点,则|PA|+|PF|的最小值是( )
设抛物线y^2=2px(p>0)的焦点为F,点P是抛物线上任意一点 (1)求绝对值PF的最小值
F为抛物线Y平方等于2PX的焦点,以A(4,2)为抛物线内的一定点,P为抛物线
抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(-1,0),则|PF||PA|的最小值是( )
抛物线函数的问题已知点F为抛物线y2=-8x的焦点,o为原点,点p是抛物线准线上一动点,点a在抛物线上,且af=4,则p
已知点A的坐标为(3,2),F为抛物线y2=2x的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,则点P的