作业帮 > 数学 > 作业

如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:06:37
如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.

(1)求证:四边形BDEF是平行四边形;
(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.
(1)证明:延长CE交AB于点G,
∵AE⊥CE,
∴∠AEG=∠AEC=90°,
在△AEG和△AEC中,

∠GAE=∠CAE
AE=AE
∠AEG=∠AEC
∴△AGE≌△ACE(ASA).
∴GE=EC.
∵BD=CD,
∴DE为△CGB的中位线,
∴DE∥AB.
∵EF∥BC,
∴四边形BDEF是平行四边形.
(2)BF=
1
2(AB-AC).
理由如下:
∵四边形BDEF是平行四边形,
∴BF=DE.
∵D、E分别是BC、GC的中点,
∴BF=DE=
1
2BG.
∵△AGE≌△ACE,
∴AG=AC,
∴BF=
1
2(AB-AG)=
1
2(AB-AC).