已知数列{an}为非常数等差数列,cn=(an)^2-[a(n+1)]^2,n属于N*
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 01:35:39
已知数列{an}为非常数等差数列,cn=(an)^2-[a(n+1)]^2,n属于N*
(1)证明{cn}也是等差数列
(2)如果已知a1+a3+a5+a7+……+a25=130,a2+a4+a6+a8+……+a26=130-13k,(k是常数)写出{cn}的通项公式
(3)在(2)中,设数列{cn}前n项和是Sn,在n=4和n=5同时取得最大值,求k的值
望“我不是他舅”解决.今晚7点前,
(1)证明{cn}也是等差数列
(2)如果已知a1+a3+a5+a7+……+a25=130,a2+a4+a6+a8+……+a26=130-13k,(k是常数)写出{cn}的通项公式
(3)在(2)中,设数列{cn}前n项和是Sn,在n=4和n=5同时取得最大值,求k的值
望“我不是他舅”解决.今晚7点前,
1.
Cn=(An)^2-(A(n+1))^2=(An-A(n+1))(An+A(n+1))
设{An}公差为d
Cn=-d(An+A(n+1))
C(n+1)-Cn
=-d(A(n+1)+A(n+2))-(-d)(An+A(n+1))
=-d(A(n+2)-An)
=-2d^2
是一个常数
{Cn}也是等差数列
2.
(A2+A4+……+A26)-(A1+A3+……+A25)
=(A2-A1)+(A4-A3)+……+(A26-A25)
=13d=130-13k-130
d=-k
A1、A3、……A25也组成等差数列
A1+A3+……+A25=(A1+A25)×13/2=2A13×13/2=13A13=130
A13=10
A1=A13-12d=10+12k
A2=A13-11d=10+11k
C1=(A1)^2-(A2)^2=(10+12k)^2-(10+11k)^2=k(23k+20)
Cn=k(23k+20)+(n-1)(-2k^2)=(25-2n)k^2+20k
3.
S5=S4
C5=S5-S4=0
C5=15k^2+20k=0
d≠0 k≠0
k=-4/3
Cn=(An)^2-(A(n+1))^2=(An-A(n+1))(An+A(n+1))
设{An}公差为d
Cn=-d(An+A(n+1))
C(n+1)-Cn
=-d(A(n+1)+A(n+2))-(-d)(An+A(n+1))
=-d(A(n+2)-An)
=-2d^2
是一个常数
{Cn}也是等差数列
2.
(A2+A4+……+A26)-(A1+A3+……+A25)
=(A2-A1)+(A4-A3)+……+(A26-A25)
=13d=130-13k-130
d=-k
A1、A3、……A25也组成等差数列
A1+A3+……+A25=(A1+A25)×13/2=2A13×13/2=13A13=130
A13=10
A1=A13-12d=10+12k
A2=A13-11d=10+11k
C1=(A1)^2-(A2)^2=(10+12k)^2-(10+11k)^2=k(23k+20)
Cn=k(23k+20)+(n-1)(-2k^2)=(25-2n)k^2+20k
3.
S5=S4
C5=S5-S4=0
C5=15k^2+20k=0
d≠0 k≠0
k=-4/3
已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,设Cn=an/2^n,求证数列{Cn}是等差数列
已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn
已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn 若数列an的通项公式为an=2n-1 设
已知数列{An}是一个首项为1,公差为2/3的等差数列,Bn=[(-1)^(n-1)]*An*A(n+1),\x0d设数
已知数列{an}前n项和为Sn,对于n属于自然数,总有Sn=(a1+an)n/2,求证{an}为等差数列.
已知数列an的前项和为Sn,a1=1,nSn+1-(n+1)Sn=n^2+cn,S1,S2/2,S3/3成等差数列.(1
已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.
a已知数列{an}的前n项和Sn=-an-(1/2)^n-1+2,n为整数,现令Cn=(n+1)|n*an,求Tn=
已知数列{an}满足a1=6,an+1-an=2n,记cn=a
数列an中,a1=1,a2=2数列bn满足an+1+(-1)n次an,a属于N* (1)若an等差数列...
已知数列{an}的前n项和为Sn,且对任意n属于N+有an+Sn=n,设Cn=n(1-bn)求数列{Cn}的前n项和Tn
已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列