作业帮 > 综合 > 作业

如何导出万有引力定律?

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 04:34:31
如何导出万有引力定律?
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T(周期) 如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为 mrω^2=mr(4π^2)/T^2 另外,由开普勒第三定律可得 r^3/T^2=常数k' 那么沿太阳方向的力为 mr(4π^2)/T^2=mk'(4π^2)/r^2 由作用力和反作用力的关系可知,太阳也受到以上相同大小的力.从太阳的角度看,(太阳的质量M)(k'')(4π^2)/r^2 是太阳受到沿行星方向的力.因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量M,k''包含了行星的质量m.由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力.如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为万有引力=G×m1×m2/r^2