康托尔集是什么.
来源:学生作业帮 编辑:作业帮 分类:语文作业 时间:2024/11/06 02:25:16
康托尔集是什么.
在数学中,康托尔集,由德国数学家格奥尔格·康托尔在1883年引入(但由亨利·约翰·斯蒂芬·史密斯在1875年发现),是位于一条线段上的一些点的集合,具有许多显著和深刻的性质.通过考虑这个集合,康托尔和其他数学家奠定了现代点集拓扑学的基础.虽然康托尔自己用一种一般、抽象的方法定义了这个集合,但是最常见的构造是康托尔三分点集,由去掉一条线段的中间三分之一得出.康托尔自己只附带介绍了三分点集的构造,作为一个更加一般的想法——一个无处稠密的完备集的例子.
康托三分集中有无穷多个点,所有的点处于非均匀分布状态.此点集具有自相似性,其局部与整体是相似的,所以是一个分形系统.
康托三分集具有
(1)自相似性;
(2)精细结构;
(3)无穷操作或迭代过程;
(4)传统几何学陷入危机.用传统的几何学术语难以描述,它既不满足某些简单条件如点的轨迹,也不是任何简单方程的解集.其局部也同样难于描述.因为每一点附近都有大量被各种不同间隔分开的其它点存在.
(5)长度为零;
(6)简单与复杂的统一.
康托尔集P具有三条性质:
1、P是完备集.
2、P没有内点.
3、P的基数为c.
康托尔集是一个基数为c的疏朗完备集.
康托三分集中有无穷多个点,所有的点处于非均匀分布状态.此点集具有自相似性,其局部与整体是相似的,所以是一个分形系统.
康托三分集具有
(1)自相似性;
(2)精细结构;
(3)无穷操作或迭代过程;
(4)传统几何学陷入危机.用传统的几何学术语难以描述,它既不满足某些简单条件如点的轨迹,也不是任何简单方程的解集.其局部也同样难于描述.因为每一点附近都有大量被各种不同间隔分开的其它点存在.
(5)长度为零;
(6)简单与复杂的统一.
康托尔集P具有三条性质:
1、P是完备集.
2、P没有内点.
3、P的基数为c.
康托尔集是一个基数为c的疏朗完备集.