设f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,f(x)的导数单调增,证当0
高数导数应用证明题设函数f(x)在【0,a】上连续,在(0,a)内可导,且f(0)=0,f’(x)单调增加,令g(x)=
设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a
设函数f(x)在[a,b]上有连续导数,且f(c)=0,a
设f(x)在[a,b]上有连续的导数,且f(x)不恒等于0,f(a)=f(b)=0,证明∫(a,b)xf(x)f'(x)
设函数f(x)在[a,b]上连续,在(a,b)内可导,且满足f(a)=0,若f'(x)单调增加,则φ(x)=f(x)/(
设f(x)在区间[a,b]上连续,且f(x)>0,证明 f(x)在[a,b]上的导数 乘 1/f(x)在[a,b]上的导
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
设f(x)在[0,+∞)上有连续的一阶导数,且lim(x→∞)f'(x)=a,证lim(x→∞)f(x)=∞
f(x)在[0,+∞)上有二阶连续导数,且f''(x)≥a>0,f(0)=0,f'(0)
f(x)在[a,b]上连续,在(a,b)可导,且在(a,b)内f(x)的二阶导数小于0,证明f(x)是单调递减的 是知道