作业帮 > 数学 > 作业

已知f(x)=2x3-6x2+a(a是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是(  )

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:58:54
已知f(x)=2x3-6x2+a(a是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是(  )
A. -37
B. 37
C. -32
D. 32
求导函数,f′(x)=6x2-12x,
令 f′(x)>0得x<0或x>2,又因为x∈[-2,2]
所以f(x)在[-2,0]上是增函数,在[0,2]上是减函数,
所以f(x)在区间[-2,2]的最大值为f(x)max=f(0)=a=3
所以f(-2)=-37,f(2)=-5,
所以x=-2时,函数的最小值为-37.
故选A.