如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是 上任意一点,过C作⊙O的切线分别交PA,PB于D,E
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 02:12:10
如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是 上任意一点,过C作⊙O的切线分别交PA,PB于D,E.(1)若△PDE的周长为10,则PA的长为___ __,(2)连结CA、CB,若∠P=50°,则∠BCA的度数为___ __度. |
5,115
(1)由于PA、PB、DE都是⊙O的切线,可根据切线长定理将△PDE的周长转化为切线PA、PB的长.
(2)根据切线长定理即可证得△PEF 周长等于2PA即可求解;根据切线的性质以及四边形的内角和定理即可求得∠AOB的度数,然后根据∠EOF= ∠AOB即可求出∠BCA的度数.
(1)∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C △ PDE =PD+DE+PE=PD+DA+EB+PE=PA+PB=10;
∴PA=PB=5;
(2)连接OA、OB、AC、BC,在⊙O上取一点F,连接AF、BF,
∵PA、PB分别切⊙O 于A、B;
∴∠PAO=∠PRO=90°
∴∠AOB=360°-90°-90°-50°=130°;
∴∠AFB= ∠AOB=65°,
∵∠AFB+∠BCA=180°
∴∠BCA=180°-65°=115°;
故答案是:5,115°.
(1)由于PA、PB、DE都是⊙O的切线,可根据切线长定理将△PDE的周长转化为切线PA、PB的长.
(2)根据切线长定理即可证得△PEF 周长等于2PA即可求解;根据切线的性质以及四边形的内角和定理即可求得∠AOB的度数,然后根据∠EOF= ∠AOB即可求出∠BCA的度数.
(1)∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C △ PDE =PD+DE+PE=PD+DA+EB+PE=PA+PB=10;
∴PA=PB=5;
(2)连接OA、OB、AC、BC,在⊙O上取一点F,连接AF、BF,
∵PA、PB分别切⊙O 于A、B;
∴∠PAO=∠PRO=90°
∴∠AOB=360°-90°-90°-50°=130°;
∴∠AFB= ∠AOB=65°,
∵∠AFB+∠BCA=180°
∴∠BCA=180°-65°=115°;
故答案是:5,115°.
如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA
直线与圆的题两道P为圆O外一点,PA、PB分别切圆O于A、B两点,MN是过劣弧AB上一点C的切线,分别交PA于M,交PB
如图,圆O是△ABC的外接圆,过A,B两点分别作⊙O的切线PA,PB交于一点P,连接OP
P为圆O外一点,PA.PB切圆O于点A.B,PA=5,∠P=70°,C为弧AB上一点,过C作圆O的切线分别交PA.PB于
点P为圆O外一点PA,PB分别切圆O于A,B.c为弧AB上任意一点过c作圆O的切线交PA,PB于点D,E.△PDE周长8
已知PA,PB分别切圆O于A,B两点,C是AB上任一点,过C做圆O的切线分别叫PA,PB于D,E.若三角形PDE的周长为
如图所示,过半径为6cm的⊙O外一点P引圆的切线PA,PB,连接PO交⊙O于F,过F作⊙O的切线,交PA,PB分别于D,
如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交
从圆O外一点P作圆O的两条切线,分别切圆O于点A,B,过AB弧上任意一点C作圆O的切线分别交PA,PB于点E,F.(1
如图,PA,PB是圆O,A、B为切点,过弧AB上的一点C作圆O的切线,交PA于D,交PB于E,
1已知PA、PB切○O于A、B,C是弧AB上一点,PA=10,过点C的切线DE交PA于D,交PB于E,△PDE周长为
如图,已知PA,PB切圆O于点A,B,过弧A,B上任意一点E作圆O的切线,交PA,PB于点C,D则证