作业帮 > 数学 > 作业

问道不等式x+y+z=1what is ∑[x^4/y(1-y^2)] min对不起哈。应该是:∑{x^4/[y(1-y

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/09/01 06:54:32
问道不等式
x+y+z=1
what is ∑[x^4/y(1-y^2)] min
对不起哈。应该是:∑{x^4/[y(1-y^2)] } 不好意思我偷懒了,这里的∑表轮换求和。后边还有两项
的确要增加条件x,y,z>0
最小值是1/8,用均值不等式即可.
还有楼上绕那么一大堆干什么啊?
要求x^4/[y(1-y^2)]+y^4/[z(1-z^2)]+z^4/[x(1-x)^2]的最小值.
根据对称性,估计是当x=y=z=1/3时取到最小值,即可猜出这个最小值是1/8.证明如下:
由均值不等式:
x^4/[y(1-y^2)]+y/8+(1-y)/16+(1+y)/32>=4*四次根号((x^4/[y(1-y^2)])*(y/8)*((1-y)/16)*((1+y)/32))=x/2
同理y^4/[z(1-z^2)]+z/8+(1-z)/16+(1+z)/32>=y/2
z^4/[x(1-x^2)]+x/8+(1-x)/16+(1+x)/32>=z/2
以上三式相加可得:x^4/[y(1-y^2)]+y^4/[z(1-z^2)]+z^4/[x(1-x)^2]+(x+y+z)/8+[3-(x+y+z)]/16+[3+(x+y+z)]/32>=(x+y+z)/2
由于x+y+z=1
上式整理得:x^4/[y(1-y^2)]+y^4/[z(1-z^2)]+z^4/[x(1-x)^2]>=1/8
故最小值是1/8,当x=y=z=1/3时取得该最小值