1.最值和极值有什么区别?2.矩阵的结合律到底是怎么算的?如果A相似于对角矩阵即P-1AP=B,N个A相乘时中间的P和P
六、已知矩阵 求可逆矩阵P和对角矩阵∧,使A与对角矩阵∧相似,即有P-1AP=∧..
设A,B均为N阶矩阵,且AB=BA,证明:如果A,B都相似于对角阵,则存在可逆矩阵P使P^-1AP与P^-1BP均为对角
设A,B都是n阶实对称矩阵,那么存在正交矩阵P使得 P'AP和P'BP都是对角矩阵的充分必要条件是AB=BA
求合同矩阵转换中的P已知A为实对称矩阵,B为对角矩阵,A与B合同但不相似,求可逆矩阵P,使P'AP=B.(P'为P的转置
相似矩阵的特征向量?B=P^(-1)AP,A和B相似,如果C是A,B的一个特征值,m是矩阵A的关于C的特征向量……为什么
老师您好,已知0是矩阵A=[1,0,1;0,2,0;1,0,a]的特征值,求:a的值和正交矩阵P使P^-1AP为对角矩阵
设A是数域P上的n阶矩阵,数a为A的n重特征值,如果A在P上相似于对角矩阵,证明A=aE为数量矩阵
P^(T)AP=B,其中A是对称矩阵,B是对角矩阵.请问当B满足什么条件时,P是正交矩阵.
n阶矩阵A和对角矩阵相似的充分条件是:A有n个不同的特征值和A是实对称矩阵.我想问:一般题目是证明n阶矩阵A和B相似,这
设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.
AB均为实对称矩阵,且AB=BA,如果A有n个互异的特征值,证明,存在正交矩阵P使P'AP与P'BP均为对角阵
设P是n阶可逆矩阵,如果B=P的负一次方AP,证明:B的m次方=A的m次方P求解