作业帮 > 数学 > 作业

计算:1-〔a-(1/1-a)〕^2 ÷ (a^2-a+1/a^2-2a+1)

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 01:47:06
计算:1-〔a-(1/1-a)〕^2 ÷ (a^2-a+1/a^2-2a+1)
1-〔a-(1/1-a)〕^2 ÷ (a^2-a+1/a^2-2a+1)
=1-〔a-(1/(1-a)〕^2 ÷ (a^2-a+1)/(a-1)^2
=1-〔a(1-a)/(1-a)-1/(1-a)〕^2 ÷ (a^2-a+1)/(a-1)^2
=1-〔(a-a^2)/(1-a)-1/(1-a)〕^2 ÷ (a^2-a+1)/(a-1)^2
=1-〔(a-a^2-1)/(1-a)〕^2 ÷ (a^2-a+1)/(a-1)^2
=1-〔-(a^2-a+1)/(1-a)〕^2 ÷ (a^2-a+1)/(a-1)^2
=1-〔(a^2-a+1)/(1-a)〕^2 *(a-1)^2 /(a^2-a+1)
=1-〔(a^2-a+1)^2/(1-a)^2 *(a-1)^2 /(a^2-a+1)
=1-〔(a^2-a+1)^2/(a-1)^2 *(a-1)^2 /(a^2-a+1)
=1-(a^2-a+1)
=1-a^2+a-1
=a-a^2