作业帮 > 数学 > 作业

在三角形ABC中,若cos^2 A+cos^2 B+cos^2 C=1,则三角形ABC的形状是?

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 00:20:28
在三角形ABC中,若cos^2 A+cos^2 B+cos^2 C=1,则三角形ABC的形状是?
若cos^2 A+cos^2 B+cos^2 C=1
3- (sin^2 A+ sin ^2 B+ sin ^2 C)=1
sin^2 A+ sin ^2 B+ sin ^2 C=2
而,sin^2C=sin^2A+sin^2B-2sinAsinBcosC,(余弦定理,正弦定理结合)
则有,2sin^2A+2sin^2B-2sinAsinBcosC=2
则,2sinAsinBcosC=2sin^2A+2sin^2B-2
=-cos(2A)-cos2B=-2cos(A+B)cos(A-B)=2cosCcos(A-B)
=2cosC(cosAcosB+sinAsinB)
即,cosCcosAcosB=0,A+B+C=180°且A,B,C均大于0°.
CosA、cosB、cosC之中至少有一个是0.
即 A、B、C 之中至少有一个是90°
故三角形ABC为直角△.