自然底数e到底有什么数学意义
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 16:46:27
自然底数e到底有什么数学意义
e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:
当n->∞时,(1+1/n)^n的极限.
注:x^y表示x的y次方.
随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000.但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了.
e在科学技术中用得非常多,一般不使用以10为底数的对数.以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”.
这里的e是一个数的代表符号,而我们要说的,便是e的故事.这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1.这个e究竟是何方神圣呢?
在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表.教科书里的对数表,是以10为底的,叫做常用对数(common logarithm).课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角.不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这么奇怪的数,会有什么故事可说呢?
这就要从古早时候说起了.至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的.那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关.
我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息.但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高.有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e).所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的.
当n->∞时,(1+1/n)^n的极限.
注:x^y表示x的y次方.
随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000.但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了.
e在科学技术中用得非常多,一般不使用以10为底数的对数.以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”.
这里的e是一个数的代表符号,而我们要说的,便是e的故事.这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1.这个e究竟是何方神圣呢?
在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表.教科书里的对数表,是以10为底的,叫做常用对数(common logarithm).课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角.不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这么奇怪的数,会有什么故事可说呢?
这就要从古早时候说起了.至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的.那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关.
我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息.但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高.有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e).所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的.
提问.自然对底数,也就是e.这个数字有什么特别的意义,为什么以这个作为标准.
数学中e是自然对数的底数,那一般a代表什么?
自然对数中的e有什么数学意义?又是如何产生的?
自然对数e是什么很多地方都见到它,标准平衡常数用到了它数学里也用到了它,这是巧合还是什么,到底这个e有什么意义
自然底数e是如何得到的?它有什么奇特之处吗?
数学e有什么意义如题
请问谁能帮我解释下e的含义?e就是那个自然对数的底数,它到底有哪些作用,用在哪些方面?
e为自然对数的底数
数学中对自然数e的研究有什么意义?
自然对数的底数不要给我一个定义,搞这个e有什么用啊?说许多式子都是最简的,又是为何?
自然对数自然对数底数e的次数x等于其展开式各项分子的底数
三江源自然保护区有什么意义?