向量a=(cosx,-2)向量b(sinx,1)且向量a平行向量b,求2sinxcosx的值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 17:11:59
向量a=(cosx,-2)向量b(sinx,1)且向量a平行向量b,求2sinxcosx的值
1)因为 a//b ,所以,由向量共线的条件可得 -sinx-3/2*cosx=0 ,
化简得 tanx=-3/2 ,
因此 2(cosx)^2-sin2x=[2(cosx)^2-2sinxcosx]/[(sinx)^2+(cosx)^2] (凑上分母1)
=(2-2tanx)/[(tanx)^2+1] (分子分母同除以 (cosx)^2 )
=(2+3)/(9/4+1) (代入)
=20/13 .
2)由已知得 a*b+b^2=sinxcosx-3/2+(cosx)^2+1=1/2*sin2x+[1+cos2x]/2-1/2
=√2/2*sin(2x+π/4)=√2/4 ,
因此 sin(2x+π/4)=1/2 ,
由 x∈(0,π/2)得 2x+π/4=5π/6 ,
解得 x=7π/24 .
以上回答你满意么?
化简得 tanx=-3/2 ,
因此 2(cosx)^2-sin2x=[2(cosx)^2-2sinxcosx]/[(sinx)^2+(cosx)^2] (凑上分母1)
=(2-2tanx)/[(tanx)^2+1] (分子分母同除以 (cosx)^2 )
=(2+3)/(9/4+1) (代入)
=20/13 .
2)由已知得 a*b+b^2=sinxcosx-3/2+(cosx)^2+1=1/2*sin2x+[1+cos2x]/2-1/2
=√2/2*sin(2x+π/4)=√2/4 ,
因此 sin(2x+π/4)=1/2 ,
由 x∈(0,π/2)得 2x+π/4=5π/6 ,
解得 x=7π/24 .
以上回答你满意么?
已知向量a=(sinx,2)向量b=(|,-cosx),且向量a垂直于向量b.1:::求tanx的值 2求:tan(x-
向量a=(sinx,cosx),向量b=(1,-2)且向量a垂直向量b则tan2x=
高中数学题 a向量=(sinx,3/2)b向量=(cosx,-1) 求f(x)=(a向量+b向量)×b向量的值域
已知向量a=(sinx,1),向量b=(cosx,-1\2)求函数f(x)=向量a•(向量b-向量a)的最小
若向量a=(1,3),向量b=(x/2,1)且(向量a+2向量b)⊥2向量a-向量b)求x的值
已知a向量的绝对值=2,b向量=(1,2),且a向量平行b向量,求a向量的坐标
已知a向量的绝对值=3,b向量=(1,2)且a向量平行b向量,求a向量的坐标
已知向量a=(sinx,3/2),向量b=(cosx,-1).求f(x)=(向量a+向量b)*向量b在[-π/2,0]上
已知向量向量a=(3、2)向量b(-1、1),向量m与3*向量a-2*向量b平行,且向量m的绝对值=4根号137,求向量
已知a向量、b向量是非零向量,且满足a向量的绝对值=2(a向量-b向量)(a向量+b向量)=1
已知向量a=(sinx,1),b=(cosx,-1/2),当a平行于b时,求(2sinxcosx+cosx)/(sin^
已知向量a的模=1,向量b的模=根号2,若向量a平行向量b,求向量a乘向量b!