作业帮 > 数学 > 作业

求证;说明

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 22:36:11

解题思路: 三角形全等
解题过程:
证明:∵△ACM,△CBN是等边三角形
∴CM=CA CN=CB
∠MCA=∠NCB=60°
∴∠MCA+∠ACB=∠NCB+∠ACB
即∠MCB=∠ACN
在△BCM和△NCA中
{CB=CN
{∠BCM=∠NCA
{CM=CA
△BCM≌△NCA(SAS)
∴BM=NA
2):∵△ACM,△CBN是等边三角形
∴AC=CA,AN=BM,∠MCA=∠NCB=60
∴∠MCN=180-∠MCA-∠NCB=180-60-60=60
∴∠ACN=∠MCB=120
∴△ACN≌△MCB
∴∠NAC=∠BMC
∴△ACE≌△MCF
∴CE=CF
∴△CEF为正三角形
最终答案:略