作业帮 > 数学 > 作业

2道代数题(1)数列an满足:an+1=an^2+((an)-1)^2,求所有的有理数ao,使得存在四个不同的正整数p,

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:12:15
2道代数题
(1)数列an满足:an+1=an^2+((an)-1)^2,求所有的有理数ao,使得存在四个不同的正整数p,q,r,s,满足ap+as=aq+ar.(说明:第一个等式中an+1下标是n+1,第二个等式中p,q,r,s均为下标)
6.设x,y,z,a,b,c为正整数,且xy+yz+zx=3.求证:
a(y+z)/(b+c)+b(x+z)/(a+c)+c(x+y)/(a+b)>=3
(1)注意到 a_{n+1}-1/2 = 2 (a_n - 1/2)^2
可以求得 a_n = 2^{(2^n)-1} (a_0 - 1/2)^{2^n} + 1/2
所以序列 {a_n} 是单调的.故不妨设 p>q>r>s
设 a_0 - 1/2 = x/y 是有理数,其中 x,y 是整数,且x,y 互素
代入 a_p + a_s = a_q + a_r 整理可得
2^{2^p-1}x^{2^p-2^s} + 2^{2^s-1}y^{2^p-2^s}
= 2^{2^q-1}x^{2^q-2^s}y^{2^p-2^q} + 2^{2^r-1}x^{2^r-2^s}y^{2^p-2^r}
所以 x^{2^r-2^s} | 2^{2^s-1} ( | 表示整除)
因为 2^r-2^s > 2^s-1,所以 x = 正负1
同样 y^{2^p-2^q} | 2^{2^p-1} 得到 y=正负1或者正负2
代回去得到a_0,再验算即可去掉多余的值.
第2题由xy+yz+zx=3及x,y,z是正整数马上能得到x=y=z=1,再往下就行.