2道代数题(1)数列an满足:an+1=an^2+((an)-1)^2,求所有的有理数ao,使得存在四个不同的正整数p,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:12:15
2道代数题
(1)数列an满足:an+1=an^2+((an)-1)^2,求所有的有理数ao,使得存在四个不同的正整数p,q,r,s,满足ap+as=aq+ar.(说明:第一个等式中an+1下标是n+1,第二个等式中p,q,r,s均为下标)
6.设x,y,z,a,b,c为正整数,且xy+yz+zx=3.求证:
a(y+z)/(b+c)+b(x+z)/(a+c)+c(x+y)/(a+b)>=3
(1)数列an满足:an+1=an^2+((an)-1)^2,求所有的有理数ao,使得存在四个不同的正整数p,q,r,s,满足ap+as=aq+ar.(说明:第一个等式中an+1下标是n+1,第二个等式中p,q,r,s均为下标)
6.设x,y,z,a,b,c为正整数,且xy+yz+zx=3.求证:
a(y+z)/(b+c)+b(x+z)/(a+c)+c(x+y)/(a+b)>=3
(1)注意到 a_{n+1}-1/2 = 2 (a_n - 1/2)^2
可以求得 a_n = 2^{(2^n)-1} (a_0 - 1/2)^{2^n} + 1/2
所以序列 {a_n} 是单调的.故不妨设 p>q>r>s
设 a_0 - 1/2 = x/y 是有理数,其中 x,y 是整数,且x,y 互素
代入 a_p + a_s = a_q + a_r 整理可得
2^{2^p-1}x^{2^p-2^s} + 2^{2^s-1}y^{2^p-2^s}
= 2^{2^q-1}x^{2^q-2^s}y^{2^p-2^q} + 2^{2^r-1}x^{2^r-2^s}y^{2^p-2^r}
所以 x^{2^r-2^s} | 2^{2^s-1} ( | 表示整除)
因为 2^r-2^s > 2^s-1,所以 x = 正负1
同样 y^{2^p-2^q} | 2^{2^p-1} 得到 y=正负1或者正负2
代回去得到a_0,再验算即可去掉多余的值.
第2题由xy+yz+zx=3及x,y,z是正整数马上能得到x=y=z=1,再往下就行.
可以求得 a_n = 2^{(2^n)-1} (a_0 - 1/2)^{2^n} + 1/2
所以序列 {a_n} 是单调的.故不妨设 p>q>r>s
设 a_0 - 1/2 = x/y 是有理数,其中 x,y 是整数,且x,y 互素
代入 a_p + a_s = a_q + a_r 整理可得
2^{2^p-1}x^{2^p-2^s} + 2^{2^s-1}y^{2^p-2^s}
= 2^{2^q-1}x^{2^q-2^s}y^{2^p-2^q} + 2^{2^r-1}x^{2^r-2^s}y^{2^p-2^r}
所以 x^{2^r-2^s} | 2^{2^s-1} ( | 表示整除)
因为 2^r-2^s > 2^s-1,所以 x = 正负1
同样 y^{2^p-2^q} | 2^{2^p-1} 得到 y=正负1或者正负2
代回去得到a_0,再验算即可去掉多余的值.
第2题由xy+yz+zx=3及x,y,z是正整数马上能得到x=y=z=1,再往下就行.
已知数列an满足a1=1,an+1=2an+1(n∈正整数) (1)求数列an的通项公式
已知数列{an}满足a1=1,an+1=2an+1 1)求证:数列{an+1}为等比数列; 2) 求{an}的通项an
已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
(1)若数列{an}满足:a1=1,an+1=2an+1(n属于正整数),则该数列的通项公式an=?
已知数列前n项和为Sn,且满足Sn=2an-3n(n属于正整数) 1求数列an的通项公式 2数列an中是否存在连续的三项
关于数列极限的已知数列an满足a1=0 a2=1 an=(an-1+an-2)/2 求lim(n->无穷)an
设数列an的前n项和为Sn,a1=1,an=Sn/n+2(n-1) (1)求an的通项公式(2)是否存在正整数n,使得S
一道数列题,已知数列an的首项a1=1,且存在常数p,r,t(其中r≠0),使得an+an+1=r·2^(n-1)与an
数列{an}满足an=2an-1+2^n+1(n为正整数,n≥2),a3=27 (1)求a1,a2的值
设数列{An}满足An+1=An^2-nAn+1,n为正整数,当A1>=3时,证明对所有的n>=1,有
已知正整数数列{an}中,其前n项和为sn,且满足Sn=1/8(an+2)2求{an}的通项公式