lim n→∞[1/(n+1)+1/(n+2)+…+1/(n+n)]=?求极值!
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 18:14:50
lim n→∞[1/(n+1)+1/(n+2)+…+1/(n+n)]=?求极值!
lim [1/(n+1)+1/(n+2)+…+1/(n+n)]=?
n→∞
lim [1/(n+1)+1/(n+2)+…+1/(n+n)]=?
n→∞
lim(n→∞) [1/(n+1)+1/(n+2)+…+1/(n+n)]
=lim(n→∞) 1/n * [1/(1+1/n)+1/(1+2/n)+…+1/(1+n/n)]
=lim(n→∞) 1/n *Σ1/(1+i/n)
由定积分的定义,
lim(n→∞) 1/n *Σ1/(1+i/n)
=∫(0到1) 1/(1+x) dx
=ln|1+x| 代入上下限1和0
=ln2 -ln1
=ln2
=lim(n→∞) 1/n * [1/(1+1/n)+1/(1+2/n)+…+1/(1+n/n)]
=lim(n→∞) 1/n *Σ1/(1+i/n)
由定积分的定义,
lim(n→∞) 1/n *Σ1/(1+i/n)
=∫(0到1) 1/(1+x) dx
=ln|1+x| 代入上下限1和0
=ln2 -ln1
=ln2
求lim n→∞ (1+2/n)^n+3
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
求极限 lim(n→∞)[根号(n^2+4n+5)-(n-1)] =
请问如何证明lim(n→∞)[n/(n2+n)+n/(n2+2n)+…+n/(n2+nn)]=1,
求极限n~∞,lim(n+1)/2n
求极限lim(n→∞)(a^n+(-b)^n)/(a^n+1+(-b)^n+1)
求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n
求极限lim(-2)^n+3^n/(-2)^[n+1]+3^[n+1] (x→∞)
求极限:lim(n→∞)[(3n+1 )/(3n+2)]^(n+1)