lim(1-1/n)^(n^2)=?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 17:55:46
lim(1-1/n)^(n^2)=?
没有说明n趋向0或n趋向∞,那两种情况都写吧:
lim[n→0] (1-1/n)^(n²)
=e^lim[n→0] n²ln(1-1/n),令n=1/y,∴n²=1/y²
=e^lim[y→∞] ln(1-y)/y²,用洛必达法则
=e^lim[y→∞] [-1/(1-y)]/(2y)
=e^(-1/2)lim[y→∞] 1/[y(1-y)],分母趋向∞,于是整式趋向0
=e^(-1/2)*0
=e^0
=1
lim[n→∞] (1-1/n)^(n²)
=lim[n→∞] [1+(1/-n)]^[(-n)*lim[n→∞] (-n)]
=e^{-lim[n→∞] n}
=e^-∞
=1/e^∞
=1/∞
=0
根据e的定义 lim[n→∞] (1-1/n)^n=e,而上面的n=-n
lim[n→0] (1-1/n)^(n²)
=e^lim[n→0] n²ln(1-1/n),令n=1/y,∴n²=1/y²
=e^lim[y→∞] ln(1-y)/y²,用洛必达法则
=e^lim[y→∞] [-1/(1-y)]/(2y)
=e^(-1/2)lim[y→∞] 1/[y(1-y)],分母趋向∞,于是整式趋向0
=e^(-1/2)*0
=e^0
=1
lim[n→∞] (1-1/n)^(n²)
=lim[n→∞] [1+(1/-n)]^[(-n)*lim[n→∞] (-n)]
=e^{-lim[n→∞] n}
=e^-∞
=1/e^∞
=1/∞
=0
根据e的定义 lim[n→∞] (1-1/n)^n=e,而上面的n=-n
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
lim(n)^1/n=1证明
求极限:lim(x→无穷)(2^n-7^n)/(2^n+7^n-1)=?
lim(n→∞)(根号n+2-根号n)*根号n-1=?
数列极限(n为无限大)lim(n+1-根号(n^2+n))=
求极限 lim(n→∞)[根号(n^2+4n+5)-(n-1)] =
求极限,lim(1+n)(1+n^2)(1+n^4)-----(1+n^2n)=?(n趋于无穷)
请问如何证明lim(n→∞)[n/(n2+n)+n/(n2+2n)+…+n/(n2+nn)]=1,
lim(n+1)^(1/2)-n^(1/2) ,n->无穷大
lim n->无穷大(2^n-1)/(3^n+1)
lim根号n^2+n+1/3n-2
lim(3^2n+5^n)/(1+9^n)