数学证明题(轮换对称式)求证a^2/(b+c+d)+b^2/(c+d+a)c^2/(d+a+b)+d^2/(a+b+c)
a,b,c,d>0 求证:a/(b+c)+b/(c+d)+c/(d+a)+d/(a+b)大于等于2,怎么证明,
已知a/b=c/d,求证a+2b/b=c+2d/d
已知:a/b=c/d,求证:(2a+3b)/(a+b)=(2c+3d)/(c+d)
已知a/b=c/d,求证2a+3b/a+b=2c+3d/c+d
已知a>b,c>d,求证a+c>b+d.
a,b,c,d>0 证(a/(b+2c+3d))+(b/(c+2d+3a))+(c/d+2a+3b))+(d/(a+2b
数学证明题求证 (ac-bd)^2>=(a^2-b^2)(c^2-d^2)
[a,b)×[c,d
a,b ,c ,d
设a,b,c,d为正数,求证(a+c/a+b)+(b+d/b+c)+(c+a/c+d)+(d+b/d+a)≥4
均值不等式证明题已知a,b,c,d均为正数,求证:b^2/a+c^2/b+d^2/c+a^2/b>=a+b+c+d
已知a:b=c:d,求证(a+c):(a-c)=(b+d):(b-d)