数列{an}单调递增,满足a1=1,(an+1)四次方+(an)四次方+1=2[(an+1)²(an)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:01:50
数列{an}单调递增,满足a1=1,(an+1)四次方+(an)四次方+1=2[(an+1)²(an)²+(an+1)²+(an)²]
(1)求数列{an}的通项公式
(2)求数列{an/(2的n次方)}前n项的和
(所有的n+1都是下角标)
(1)求数列{an}的通项公式
(2)求数列{an/(2的n次方)}前n项的和
(所有的n+1都是下角标)
(1)原式整理,因解分解后,
[a(n+1)^2+a(n)^2]^2-2[a(n+1)^2+a(n)^2]+1=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2-4[a(n+1)(an)]^2=0
{a(n+1)^2+a(n)^2-1+2a(n+1)(an)}{a(n+1)^2+a(n)^2-1-2a(n+1)(an)}=0
a(n+1)^2+a(n)^2-1+2a(n+1)(an)=0 或 a(n+1)^2+a(n)^2-1-2a(n+1)(an)=0
[a(n+1)+a(n)]^2-1=0 或 [a(n+1)-a(n)]^2-1=0
由于是递增数列,所以
[a(n+1)+a(n)]^2>1,
所以[a(n+1)+a(n)]^2-1=0不成立,舍去,留下第二组.即
[a(n+1)-a(n)]^2-1=0
(a(n+1)-a(n)+1 )(a(n+1)-a(n)-1)=0
a(n+1)-a(n)+1=0或a(n+1)-a(n)-1=0
由于a(n+1)-a(n)>0,所以a(n+1)-a(n)+1=0不成立,舍去,留下:a(n+1)-a(n)-1=0
结论:经过层层选拔,精挑细选,化简为a(n+1)=a(n)+1,问题柳暗花明,原来是首项为1,公差为1的单调递增等差数列,简言之,就是正整数集合.
所以an=n,n为正整数.
(2)新数列bn=an/2^n=n/2^n是观察分母是等差数列,分子是等比数列,可以采用等比数列的求和公式法,即乘上公比后,错位相减法.
Sn=1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n
两边乘上公比1/2, Sn/2=1/2^2+2/2^3+3/2^4+...+(n-1)/2^n+n/2^(n+1)
错位相减后,Sn-Sn/2=(1/2+1/2^2+1/2^3+...+1/2^(n-1)+1/2^n)-n/2^(n+1)
Sn-Sn/2=(1-1/2^n)-n/2^(n+1)
Sn/2=1-1/2^n-n/2^(n+1)
Sn=2-1/2^(n-1)-n/2^n
完毕,坚持就是胜利,看似麻烦的题目,最后结果竟是如此简单,请批评指正.
[a(n+1)^2+a(n)^2]^2-2[a(n+1)^2+a(n)^2]+1=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2-4[a(n+1)(an)]^2=0
{a(n+1)^2+a(n)^2-1+2a(n+1)(an)}{a(n+1)^2+a(n)^2-1-2a(n+1)(an)}=0
a(n+1)^2+a(n)^2-1+2a(n+1)(an)=0 或 a(n+1)^2+a(n)^2-1-2a(n+1)(an)=0
[a(n+1)+a(n)]^2-1=0 或 [a(n+1)-a(n)]^2-1=0
由于是递增数列,所以
[a(n+1)+a(n)]^2>1,
所以[a(n+1)+a(n)]^2-1=0不成立,舍去,留下第二组.即
[a(n+1)-a(n)]^2-1=0
(a(n+1)-a(n)+1 )(a(n+1)-a(n)-1)=0
a(n+1)-a(n)+1=0或a(n+1)-a(n)-1=0
由于a(n+1)-a(n)>0,所以a(n+1)-a(n)+1=0不成立,舍去,留下:a(n+1)-a(n)-1=0
结论:经过层层选拔,精挑细选,化简为a(n+1)=a(n)+1,问题柳暗花明,原来是首项为1,公差为1的单调递增等差数列,简言之,就是正整数集合.
所以an=n,n为正整数.
(2)新数列bn=an/2^n=n/2^n是观察分母是等差数列,分子是等比数列,可以采用等比数列的求和公式法,即乘上公比后,错位相减法.
Sn=1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n
两边乘上公比1/2, Sn/2=1/2^2+2/2^3+3/2^4+...+(n-1)/2^n+n/2^(n+1)
错位相减后,Sn-Sn/2=(1/2+1/2^2+1/2^3+...+1/2^(n-1)+1/2^n)-n/2^(n+1)
Sn-Sn/2=(1-1/2^n)-n/2^(n+1)
Sn/2=1-1/2^n-n/2^(n+1)
Sn=2-1/2^(n-1)-n/2^n
完毕,坚持就是胜利,看似麻烦的题目,最后结果竟是如此简单,请批评指正.
数列{an}满足a1=1 an+1=2n+1an/an+2n
数列{an}满足a1=1,且an=an-1+3n-2,求an
数列an满足a1=2,an+1=4an+9,则an=?
已知数列{an}满足an+1=2an+3.5^n,a1=6.求an
数列an满足a1=2,an+1=an²求an
若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+
已知:等差数列,满足an+an+1+an+2=4则该数列为递增数列
数列an中,(n+1)an+1-nan方+an+1an=0,求an
数列an满足a1=1,an=an-1+1/n方-n(n大于等于2),求an通项
已知数列{an},满足a1=1/2,Sn=n²×an,求an
已知数列an满足a1=1,1/an+1=根号1/an^2+2,an>0,求an
已知数列an满足 a1=1/2,an+1=3an/an+3求证1/an为等差数列