已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 10:00:44
已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论:①BC=2DE;②D点到OE的距离不变;③BD+CE=2DE;④AE为外接圆的切线.其中正确的结论是( )
A. ①②
B. ③④
C. ①②③
D. ①②④
A. ①②
B. ③④
C. ①②③
D. ①②④
连接OD
∵∠A=60°
∴∠B+∠C=120°,
∴
BD+2
DE+
EC=240°,
∵∠B+∠C=120°,
∴2
DE=120°,
∴
DE=60°,
∴∠DOE=60°又OD=OE
∴△ODE是等边三角形,所以①正确,
则D到OE的长度是等边△ODE的高,则一定是一个定值,因而②正确;
③根据已知条件,③不一定成立,错误;
④根据切线的定义,错误.
故选A.
∵∠A=60°
∴∠B+∠C=120°,
∴
BD+2
DE+
EC=240°,
∵∠B+∠C=120°,
∴2
DE=120°,
∴
DE=60°,
∴∠DOE=60°又OD=OE
∴△ODE是等边三角形,所以①正确,
则D到OE的长度是等边△ODE的高,则一定是一个定值,因而②正确;
③根据已知条件,③不一定成立,错误;
④根据切线的定义,错误.
故选A.
三角形ABC中角A=60度,BC为定长,以BC为直径的圆O分别交AB、AC于点D、E,连接DE、OE.
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
已知△ABC中 AB=BC以AB为直径的圆O交AC于点D过D作DE⊥BC垂足为E连接OE CD=根号3 ∠ACB等于30
已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
如图,已知:在△ABC中,AC=BC,以BC为直径的圆O交AB于点D,过点D作DE⊥AC,交AC于点E,交BC的延长线于
(2005•宿迁)已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的
已知:如图,在△ABC中,AB=AC.以AB为直径的⊙o交BC于点D,过点D做DE⊥AC于点E.延长DE交BA的延长线于
如图,Rt△ABC中,∠ACB=90°,∠A=30°.以BC为直径的圆O交AB于点D,DE切圆O于点D,交AC于点E,圆
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E,求证:DE=12BC.
如图,已知在Rt△ABC中,∠C=90°,以AC为直径作圆O,交AB于D点,过点O作OE∥AB,交BC于E.
已知三角形ABC中,AB=AC,以AB为直径作圆O分别交AC,BC于D,E两点,过B点的切线交OE的延长线于点F,连接F
如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交A