为什么只有正4,6,8,12,20面体?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:10:43
为什么只有正4,6,8,12,20面体?
在北京师范大学出版社数学七年级上册第31页的欧拉发现:面数f+顶点数v-棱数e=2,那为什只有正4,6,8,12,20面体?
在北京师范大学出版社数学七年级上册第31页的欧拉发现:面数f+顶点数v-棱数e=2,那为什只有正4,6,8,12,20面体?
正多面体只有正四面体、正八面体、正六面体、正十二面何等和正二十面体五种.
我们现在来证明,最多只有5个正多面体(如图)
至于确有5个正多面体存在,那是早就知道的事(古希腊柏拉图(Plato)时候).图形以及制造模型方法,可以参看史泰因豪斯(Steinhaus)著《数学万花镜》.①
证明 对于正多面体,假设它的各面都是正n边形,而且每一个顶角处有r个边相遇.这样就有:
nF=2E (1)
rV=2E (2)
(1)的右边系数2是因为每边出现在2面中,(2)的右边系数2是因为每边通过2个顶角.把(1)和(2)代入欧拉公式中,就得到:
或
(3)
显然n≥3,r≥3,因为多边形至少有三边,而在每顶角处也至少有三边.但n>3,且r>3又是不可能的,因为那样就要有 ,可是E>0.所以r和n中至少有一个等于3.
设n=3,那末 ,因此r=3,4,5,由是E=6,12,30,而F=4,8,20,这就给出了正四面体,正八面体和正二十面体.
设r=3,那末 ,因此n=3,4,5,由是E=6,12,30,而F=4,6,12,这就给出了正四面体,正六面体(即立方体)和正十二面体.
我们现在来证明,最多只有5个正多面体(如图)
至于确有5个正多面体存在,那是早就知道的事(古希腊柏拉图(Plato)时候).图形以及制造模型方法,可以参看史泰因豪斯(Steinhaus)著《数学万花镜》.①
证明 对于正多面体,假设它的各面都是正n边形,而且每一个顶角处有r个边相遇.这样就有:
nF=2E (1)
rV=2E (2)
(1)的右边系数2是因为每边出现在2面中,(2)的右边系数2是因为每边通过2个顶角.把(1)和(2)代入欧拉公式中,就得到:
或
(3)
显然n≥3,r≥3,因为多边形至少有三边,而在每顶角处也至少有三边.但n>3,且r>3又是不可能的,因为那样就要有 ,可是E>0.所以r和n中至少有一个等于3.
设n=3,那末 ,因此r=3,4,5,由是E=6,12,30,而F=4,8,20,这就给出了正四面体,正八面体和正二十面体.
设r=3,那末 ,因此n=3,4,5,由是E=6,12,30,而F=4,6,12,这就给出了正四面体,正六面体(即立方体)和正十二面体.
为什么只有正三边形,正四边形,正六边形可以单独密铺平面.
为什么用一种正多边形铺地面时只有正三角形,正方形和正六边形三种正九边形为什么不行?
听说正多面体只有正四面体、正六面体、正八面体、正十二面体和正二十面体五种是这样吗?
为什么用一种正多边形铺地面时只有正三角形,正方形和正六边形三种
为什么用一种正多边形铺地面时,只有正三角形,正方形和正六边形一种?
为什么用一种正多边形地砖铺地面时只有正三角形,正方形和正六边形三种,说明理由
为什么一个纸圈只有一个面?
正8面体的面数,顶点数与棱数分别为?
正四面体,正六面体,正八面体,正十二面体,有几个顶点,几条棱,几个面
正十二面体和正八面体有几个顶点、面、棱
能正反转的直流电动机为什么只有两根线?
正四面体,正方体,正八面体,正十二面体,正二十面体 的顶点数,面数,棱数