作业帮 > 数学 > 作业

在△ABC中,若a²-b²=(根号3)bc,sinC=(2根号3 )sinB,求∠A

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 05:54:00
在△ABC中,若a²-b²=(根号3)bc,sinC=(2根号3 )sinB,求∠A
根据正弦定理:b/sinB=c/sinC
∴c*sinB=b*sinC
又sinC=2√3sinB
∴c*sinB=b*2√3sinB
又∵B为△ABC的内角
∴sinB≠0
∴c=2b√3
又根据余弦定理:a^2=b^2+c^2-2bccosA
又∵a^2-b^2=(√3)bc
∴c^2-2bc*cosA=(√3)bc
又∵c、b为△ABC的边,
∴b≠0,c≠0
∴(2√3)-2cosA=√3
cosA=(√3)/2
又∵A为△ABC的内角,
∴0°<A<180°
∴A=30°