第11ti
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:29:48
解题思路: 由已知条件,根据等边三角形的性质推出△AEF≌△BFD≌△CDE.从而推出AE=BF=CD,AF=BD=CE.
解题过程:
解:
图中还有相等的线段是:AE=BF=CD,AF=BD=CE.
事实上,∵△ABC与△DEF都是等边三角形,
∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD.
又∵∠CED+∠AEF=120°,∠CDE+∠CED=120°,
∴∠AEF=∠CDE,同理,得∠CDE=∠BFD,
∴△AEF≌△BFD≌△CDE(AAS),
所以AE=BF=CD,AF=BD=CE.
最终答案:略
解题过程:
解:
图中还有相等的线段是:AE=BF=CD,AF=BD=CE.
事实上,∵△ABC与△DEF都是等边三角形,
∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD.
又∵∠CED+∠AEF=120°,∠CDE+∠CED=120°,
∴∠AEF=∠CDE,同理,得∠CDE=∠BFD,
∴△AEF≌△BFD≌△CDE(AAS),
所以AE=BF=CD,AF=BD=CE.
最终答案:略