作业帮 > 数学 > 作业

简便运算:(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+...+(1/1+2+...+2011) 53/5

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 16:54:41
简便运算:(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+...+(1/1+2+...+2011) 53/56*57
我要简便运算的过程,是简便的!
因为1+2+..+n=n*(n+1)/2
所以:1/(1+2+..+n)=2/n*(n+1)=2*(1/n-1/n+1)
1/1+2=2*(1/2-1/3)
1/1+2+3=2*(1/3-1/4)
...
1/1+2+..+2011=2*(1/2010-1/2011)
所以:
:(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+...+(1/1+2+...+2011)1
=2*(1/2-1/3+1/3-1/4+..+1/2010-1/2011)
=2*(1/2-1/2011)
=1-2/2011
=2009/2011
53/56*57
=3021/56
=53.946