一半径R的非导体球面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:44:43
一半径为R的均匀带电球面,带电量为Q,若规定球面上电势值为零,则无线远处电势为多少?

答:均匀带电球面球外空间电场等效于点电荷在球心处产生的电场.取无限远为零势面,则φ=kQ/r,则r=R处电势为φ=kQ/R.若规定球面上电势值为零,由于球面与无限远的电势差不变,因此φ=-kQ/R,Q

均匀带电球面,电荷面密度为a,半径为R,球面内任一点的电势()

B均匀带电球面,电场是对称分布的,高斯面的选取就选和带电球面同球心的球面,这样高斯面上的各点的场强大小相等,方向沿着球半径,也就是各点的球面法向方向.高斯面的电场强度通量Φe=∮E×dS(矢量积分)=

求一半径为R电荷量为Q的均匀带电球面内外任一电的电场强度和电势

球内场强为0,电势相等为球壳处电势球外的电场和电势分布和把球上电荷看成集中在圆心的点电荷相同

一半径为R的光滑半球面固定于水平地面上,今使一质量为M的物块从球面顶点几乎无初速地滑下求

第一问比较简单.a=gsinθ这个是切向加速度.法向的怎么来的在第二问说为2g第二问这么考虑球在下滑时做的圆周运动对吧当所需向心力大于其所能得到的向心力时就会.飞出去很明显向心力是由重力提供的设球表面

大学物理电学经典例题一:一半径为R的均匀带电球面,电荷面密度为P,求球面内、外的场强分布;二:一半径为R的均匀带电薄球壳

一:球内场强0,球外场强公式同点电荷.二:电场强度的分布同“一”,球心O的电势等于球表面的电势,公式同点电荷.

半径为r的均匀带电球面1,带电量为q,其外有一同心的半径为R的均匀带电球面2,带电量为Q,两球面的电势差

高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明

真空中有一均匀带电球面,球半径为r,总带电量为q,今在球面上挖出一很小面积ds,设其余部分的电荷仍均匀分布,则挖去以后球

ds面积上的电荷:q*ds/(4πr^2)所以电场强度大小为:E=[kq*ds/(4πr^2)]/r^2=kq*ds/(4πr^4)电场方向由圆心指向小面积ds.再问:你可能没理解意思问的是挖去了ds

真空中一半径为R的均匀带电球面,电荷密度为σ,在距球心为2R处的电场强度大小为 ----,;电势为-----

由高斯定理可等效为球心点电荷,因此场强为sigma/4epsilon0,电势为r*sigma/2epsilon0再问:是这个答案再答:没错就是这个

一半径为R的均匀带点球面,带电量为Q,若规定该球面上电势为零,则球面外距球心为r处的p点处,其电势为

首先用高斯定理并结合球对称性求出空间中的电场强度,然后用电场对路径积分求出电势差:电势0点与P处的电势差为Ep-E0=-积分E.dl

半径R的均匀带电球面,若其电荷面密度为σ,则在距离球面R处的电场强度大小为多少?

用高斯定理做就可以了.做与球面同心的球面作为高斯面,半径设为2R.由对称性,场强沿高斯面半径方向,高斯面上各点场强的大小处处相等.由高斯定理:E*4π(2R)^2=4πR^2σ/ε0E=σ/4ε0再问

半径为R的非导体薄圆盘均匀带电,电荷的密度为σ.求圆盘边缘上一点的电势.

例4.薄圆盘轴线上的场强.设有一半径为R、电荷均匀分布的薄圆盘,其电荷面密度为σ.求通过盘心、垂直与盘面的轴线上任一点的场强.把圆盘分成许多半径为r、宽度为dr的圆环,其圆环的电量为dq=σds=σ2

自半径为R的球面上一点M

解题思路:见解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php

一检验电荷在以一个点电荷为球心,半径为r的球面上各点所受的电场力相同 为什么错?

力是矢量,.电场力大小相同,但是方向不同,所以说电场力相同时错误的.

求半径为R的球面的内接圆柱体体积的最大值.

设底面半径为R,高为2H则R^2+H^2=r^2V=πR^2H=2π(r^2-H^2)H=2π(r^2H-H^3)V′=2π(r^2-3H^2)令V′=0则H=√(r^2/3)=√3r/3代入V内求值

一个半径为R的球面均匀分布电荷,试证明:球面内部电场强度处处为零

自己查公式我现在忘记了好象三E=F*R*r/2你用微积分的方法也可以算出来我只能帮你提示哈因为都忘记了.

一半径为R的球面均匀带电,试证明球面内电场强度处处为零.(微积分) 小立体角的公式为什么

同学,你的思路不好.这题用Gauss'  Law(高斯定理)一步就能解决.如图再问:谢谢高斯定理这个方法明白,但我希望用微积分证明的的方法再答:此题用微积分算到最后是一个超

已经光波波长和球面半径R...如何测定透明液体光学介质的折射率?

方法很多,可以利用光的干涉现象(平板玻璃和球面玻璃,中间放液体,利用激光形成干涉条纹,利用条纹数来计算折射率),还可以利用仪器分光仪来测量,等等.

如图所示,一质量为m的小滑块沿半径为R的光滑半球面无初速度滑下,试求滑块离开球面时的高度h.

不妨设离开时物块与球心连线夹角为a,有mgR(1-cosa)=(mv^2)/2此时向心加速度由重力提供,故cosamg=mv^2/R解得cosa=2/3故高为Rcosa=2R/3不懂问我.