一条抛物线的形状与y=1 2x²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:57:41
一条抛物线的形状 ,开口方向与抛物线y=1/2x相同,对称轴及顶点与抛物线y=3(x-2)相同,求其解析式

答:抛物线开口和形状相同,则a值相同y=ax^2+bx+c的开口形状和方向与y=(1/2)x^2的相同则有:a=1/2y=3(x-2)^2的对称轴x=2,顶点(2,0)则对称轴x=-b/(2a)=2所

一条抛物线的形状,开口方向与二次函数y=12

根据题意得:a=12,顶点坐标为(2,0),则抛物线解析式为y=12(x-2)2=12x2-2x+2.

已知一条抛物线的形状与开口方向都与抛物线y=-x2相同,它的顶点在直线y=2x+1上,且经过这条直线与x轴的交点,求这条

根据题意设抛物线解析式为y=-(x-m)2+2m+1,对于直线y=2x+1,令y=0,得到x=-12,把x=-12,y=0代入得:0=-(12+m)2+2m+1,解得:m=32或m=-12,则这条抛物

已知一条抛物线的开口方向和形状大小与抛物线y=3x*2都相同,顶点在抛物线y=(x+2)*2的顶点上.

抛物线的开口方向和形状大小与抛物线y=3x*2都相同可设为y=3(x+a)*2+b抛物线y=(x+2)*2的顶点为(-2,0)所以y=3(x+2)*2

一条抛物线的形状,开口方向与抛物线y=5x的平方+2相同,且顶点坐标

形状相同即a的绝对值相同开口方向相同即a的符号相同顶点不同,为(4,-2)所以函数方程为y=5(x-4)平方-2x-4即顶点x为4常数项为-2即顶点y为-2化简可得答案再问:可为什么解析式是y=5x的

已知一条抛物线开口方向和形状大小与抛物线y=-5x²都相同,将此抛物线绕其顶点旋转180º得到的抛

(1)y=a(x-3)²的顶点坐标为(3,0)根据旋转前后顶点不变得顶点恒为(3,0)向左平移2个单位后顶点坐标为(1,0)由于平移与旋转不改变开口大小,得a=l-5l=5所以平移后的抛物线

一条抛物线的形状、开口方向与抛物线y=2X²相同,对称轴和抛物线y=(X-2)²相同,且顶点纵坐标为

∵y=(x-2)²的对称轴为x=2∴此抛物线的解析式为y=2(x-2)²+b又顶点纵坐标为0∴y=2(x-2)²=2x²-8x+8

抛物线二次函数问题已知一条抛物线的开口方向和形状大小与抛物线y=3x*2都相同,顶点在抛物线y=(x+2)*2的顶点上.

因为对称轴是x=-2.所以设的时候就设为y=3(x+2)*2再问:是不是“顶点在抛物线y=(x+2)*2的顶点上”对称轴就是直线x=-2?再答:对称轴经过顶点。所以你这样理解也是对的

您回答过的一题已知一条抛物线的开口方向和形状大小与抛物线y=3x²都相同..后面还有

1,设Y=a(X+b)²+c因为抛物线的开口方向和形状大小与抛物线Y=-8X²都相同所以a=-8又因为它的定点在抛物线Y=2(X+3/2)²的顶点上.抛物线Y=2(X+3

如果一条抛物线的形状与y=--1/3x的平方+2相同且顶点为(4,-2)则它的解析式是?

形状相同即x^2前的系数相同,又知其顶点所以其解析式为:y=-1/3(x-4)^2-2=(-x^2+8x-22)/3

有一条抛物线形状、大小、开口方向与抛物线y=-3x²相同,它的对称轴是直线x=-3,写出抛物线的表达式

由一条抛物线形状、大小、开口方向与抛物线y=-3x²相同可知a=-3因为它的对称轴是直线x=-3所以y=-3(x+3)²

一条抛物线形状与y=2x²相同,顶点坐标为(-1,-2),

一条抛物线形状与y=2x²相同可以理解为,该图形是由y=x^2经过平移得到设曲线为y=2(x+a)²+b顶点坐标为(-1,-2)曲线的最低点为x=-a时取得,所以-a=-1解得a=

一条抛物线的形状、开口方向与抛物线y=2X²相同,且纵坐标=-2对称轴X=-1.

y=ax²+bx+c形状、开口方向与抛物线y=2X²相同,所以a=2对称轴=-b/(2a)=-b/4=-1,所以b=4y=2x²+4x+c顶点纵坐标-2,当x=-1时,y

一条抛物线其形状与y=½x²相同,对称轴与抛物线y=3x²+2相同,且顶点的纵坐标是-4,

假设y=±0.5(x-a)²+b(形状相同,x²的系数的绝对值相同)化简得y=±0.5(x²-2ax+a²)+b对称轴为x=-b/2a=a/0.5=2ay=3x

一条抛物线的形状 开口方向与抛物线Y=二分一X的平方-4X+三相同,顶点是(-2,1)则抛物线的解析式为?

先看后一条抛物线y=x^2/2-4X+3x^2前的系数是正数所以开口向上设所求抛物线为y=ax^2+bx+c则a>0顶点在x=-b/2a处达到所以-b/2a=-2.1最大值1=(4ac-b^2)/4a

二次函数的一个疑问一条抛物线的开口方向和形状大小与抛物线y=3x²都相同,这句话中,问形状大小相同是什么意思?

抛物线形状大小相同可以这样去理解就是由y=3x²这个图像平移后得到另一个抛物线故应该设为y=3(x+h)²+

一条抛物线的形状 开口方向与二次函数y=- 1/2 X方的相同,对称轴及顶点与抛物线y=3

y=-1/2(x-2)^2再问:有详细过程吗再答:可以这样:因为一条抛物线的形状开口方向与二次函数y=-1/2X方的相同。所以可以设抛物线为y=-1/2(x-a)^2+b又因为抛物线y=3(x-2)的

1.一条抛物线其形状与抛物线y=2x^2相同,对称轴与抛物线y=(x-2)^2相同,且顶点坐标是3,求这个抛物线.

1.因为形状相同所以二次项系数为2,对称轴与抛物线y=(x-2)^2相同,所以对称轴为直线x=2,这两个条件和在一起可得出二次函数的为y=2(x-2)^2+C(c为常数),再利用第三个条件,顶点坐标为