一直在数列中,an=2n-19,求数列an的绝对值的前n想赫尔
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:59:30
第1问:设数列{bn},令bn=an-n则an=bn+n代入a(n+1)=4an-3n+1得b(n+1)+n+1=4(bn+n)-3n+1化简得b(n+1)=4bn所以数列{bn}即数列{an-n}是
a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-
由条件得a1=2,a2=5.且有:a2-a1=3*1,a3-a2=3*2,a4-a3=3*3,...an-a(n-1)=3*(n-1),累加得,an-a1=3*(1+2+3+...+n-1)=3n(n
楼主做的是对的,我带入计算也是1,1,1,1,25,相信自己!答案也有错的时候.
a(n+1)=2an+2^n,bn=an/2^(n-1),b(n+1)=a(n+1)/2^n,b1=a1/2^0=1a(n+1)/2^n=an/2^(n-1)+1,b(n+1)=bn+1,bn为首项为
∵2√Sn=an+1,∴Sn=(an+1)^2/4∴S(n-1)=(a(n-1)+1)^2/4两式相减,得到an=Sn-S(n-1)=1/4*(an^2-a(n-1)^2)+1/2*(an-a(n-1
(1)an=(3n-2)/(3n+1)=(3n+1-3)/(3n+1)=1-3/(3n+1)从而an
3^n+2是什么意思,是2+3^n还是3^(n+2)如果是3^n+2那么题目有问题,请把题目说清楚,不然没办法做题的,根据题目后面的问题我按照3^(n+2)解答.an+1=3an+3^(n+2),等式
(1)a(n+1)=(1+1/n)an+(n+1)/(2^n)a(n+1)/(n+1)=(1/n)an+1/(2^n)a(n+1)/(n+1)-(1/n)an=1/(2^n)an/n-a(n-1)/(
an=Sn-Sn-1=4n+1(n>=2),a1=2*1+3=5,满足上式,an通项就是4n+1,即证实等差数列
由于(-1)^n+(-1)^(n+1)=0所以S10=-2(1+2+..+10)=-110S99=-2(1+2+..+99-(-1)^99)=-9898
(1)∵an+1=2an+2n,∴an+12n=an2n−1+1.∵bn=an2n−1,∴bn+1=bn+1,∴数列{bn}是以b1=a120=1为首项,1为公差的等差数列.(2)由(1)可知:bn=
1.an=-a(n-1)-2n+1an+n=-a(n-1)-n+1=-[a(n-1)+(n-1)](an+n)/[a(n-1)+(n-1)]=-1,为定值.a1+1=3+1=4数列{an+n}是以4为
an=1/n(n+1)(n+2)=[1/n(n+1)-1/(n+1)(n+2)]/2,a1=1/6所以S1=a1=1/6n>=2时,Sn=a1+a2+...+an=[1/1*2-1/2*3]/2+[1
A1=1/2成立,设An=1/[n(n+1)]成立,因为A1+A2+…+An=n^2An所以A1+A2+…+An+A(n+1)=(n+1)^2A(n+1),所以A(n+1)=(n+1)^2A(n+1)
A(n+1)=An+ln(1+1/n)a(n+1)-an=ln(1+1/n)=ln【(n+1)/n】an=a1+(a2-a1)+(a3-a2)+(a4-a3)+.+(an-an-1)=2+ln(2/1
(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=
1.Sn=2^n-1an=Sn-S(n-1)=2^n-1-[2^(n-1)-1]=2^(n-1)an²=4^(n-1){an²}为等比数列,首项是1,公比4a1²+a2&
an+1=[(n+1)/n]*an+2(n+1),an+1/(n+1)=an/n+2bn=an/nbn+1=bn+2{bn}是等差数列b1=a1=1bn=2n-1an=n*bn=n(2n-1)a8=1
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1