三角形外接圆,ah垂直bc,ah等于8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:00:28
根据三角形中位线定理,DF=1/2AC,DE=1/2AB,在直角三角形AHC中,HE是斜边中线,HE=1/2AC,同理,FH=1/2AB,DF=HE,DE=FH,FE是公共边三角形DEF全等于三角形H
证明:∵DE平行BC∴AD/AB=DE/BC∵△ABH∽△CBF∴AH/AB=CF/BC∵AD=AH∴DE/BC=CF/BC∴DE=CF
∵AP⊥PC,AP⊥PB.∴AP⊥平面PBC∴AP⊥BC∵PH⊥面ABC∴PH⊥BC∴BC⊥平面PAH∴BC⊥AH即AH垂直BC
根据勾股定理得:AH=4根据角平分线定理得:3/5=MH/(4-MH),解得MH=3/2所以:y=(1/2)(4-x)(3/2).即y=-(3/4)x+3.且x的定义域为(0,4)当MC为等腰△MPC
证明:连接BE∵AD⊥BC∴∠CAD+∠ACB=90∵∠ACB、∠AEB所对应圆弧都是劣弧AB∴∠ACB=∠AEB∴∠CAD+∠AEB=90∵AE是直径∴AB⊥BE∴∠BAE+∠AEB=90∴∠BAE
做出来啦!过点A作BC的平行线AM交CD的延长线于M∵AB=AD∵∠BAH=∠DAM∵∠AHB=∠AMD=90度∴⊿ABH≌⊿ADM∴AH=AM=aS四边形ABCD=S矩形AHCM=AH*AM=a*a
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
1)过A作公切线AP,则∠CAP=∠AFG,∠CAP=∠ABC,所以∠AEG=∠ABC,所以FG‖BC,又EF垂直BC于E,GH垂直BC于H,所以四边形FEHG是矩形2)因为△AFG相似△ABC,所以
证:AH⊥BC交EF于G点∵D,E,F,分别是边BC,CA,AB的中点∴AE=EC,AF=FB,BD=DC根据三角形的中位线定理,可得FH=1/2AC,EF=1/2BC,DE=1/2ABFH‖AC,E
AP⊥BPAP⊥PC==>AP⊥PBC==>AP⊥BCPH⊥ABC==>PH⊥BCPH⊥BC,AP⊥BC==>BC⊥APH==>BC⊥AH
证明:连接BD,∵AD是圆O的直径∴∠ABD=90°∴∠BAD+∠D=90°∵∠D、∠C所对应圆弧都为劣弧AB∴∠D=∠C∴∠BAD+∠C=90°∵AH⊥BC∴∠CAH+∠C=90°∴∠BAD=∠CA
做垂线FI交DE于I设AG长为x,ADE和ABC相似,则DE为2x.因为等边,FI=√3*x,GH=2-x.则√3*x=2-x
已知,点D是△ABC的外接圆的弧BC的中点,可得:AD平分∠BAC;所以,DE=DF.(角平分线上的点到角两边的距离相等)(图中估计是:E在AB延长线上,F在AC上,反过来的话方法也一样)已知,A、B
证明:∵AH⊥BC,E为AC中点∴EH=1/2AC∵D为BC中点.E为AB中点∴DF=1/2AC∴DF=EH同理HF=DE∵FE=FE∴△EFH≌△FED
楼上证明太繁琐了!用了两次全等三角形证明:(1)∵∠BAC=90°,AH⊥BC∴∠AED=∠BEH=90°-∠EBH∠ADE=90°-∠ABD∵BD是∠B的平分线,∴∠ABD=∠EBH则∠AED=∠A
证明:连接BD∵AD是⊙O的直径∴∠ABD=90°∵AE⊥BC∴∠AEC=90°∵∠D=∠C∴∠BAD=∠CAE
过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.
(1)∵AB⊥AC ∴∠1+∠D=90°∵CF⊥BD ∴∠2+∠D=90°∴∠1=∠2在△ABD和△ACE中∠1=∠2,