三重积分xy2z3曲面z=xy与平面y=x,x=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:53:45
再问:谢谢(不过最后一步写错了,5/2还要乘2π/3
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用
设所围成的立体为Ω,则Ω的上半曲面是抛物面,下半曲面是开口向上的锥面,因此,宜用柱面坐标计算,又由z=6−x2−y2z=x2+y2⇒交线x2+y2=4z=2,Dxy:x2+y2≤4,而r≤z≤6-r2
可以用柱面坐标,立体体积=4∫(0,π/2)dθ∫(0,1)rdr∫(r²,r)dz=4π/2∫(0,1)(r²-r³)dr=2π(r³/3-r^4/4)|(0
Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y
稍等再答:再答:降三重积分为二重积分最简单。
积分区域你确定是这样的么?我觉得这样不能围成闭合区域
先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:
可能是你的哪里算漏了吧
积分限定的是正确的,不是正解.∫∫∫zdv=∫(0,1)zπz^2dz+∫(1,√2)zπ(2-z^2)dz=π/4+π[z^2-(1/4)z^4](1,√2)=π/4+π[(2-1)-(1-1/4)
D(z)这个区域由X^2+Y^2=aZ可以看出它是一个圆.面积为π*半径的平方.r^2=x^2+y^2=aZ,所以S(z)=πr^2=πaz
这是大学理工科的高等数学.一般人真答不上来.二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(
您够可以的了,哈哈哈,比这个好积的想来不多了
首先围成的是下边是一个抛物面体上部是球的部分,让z1=z2,则交界处的交线方程是x^2+y^2=4,且对应的z=2,因为dv=r^2sinadado(a为r与z轴夹角,o为在xoy面内投影与x轴夹角)
先判断两个曲面的大小关系:z=x²+2y²为顶点在原点,开口向上的椭圆旋转抛物面z=2-x²为顶点在直线y=0上,开口向下的抛物面所以有==>x²+2y
作柱面坐标变换,设x=rcosφ,y=rsinφ,z=z故∫∫∫|z-x^2+y^2|dxdydz=∫(0,2π)dφ∫(0,√2)rdr∫(0,1)|z-r|dz(符号∫(a,b)表示从a到b积分,
∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y