2. 随机变量X-N(0,1) ,Y=X^2 ,则相关系数 =( B )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:34:32
随机变量X~N(0,1),Y~U(0,1),Z~(5,0.5)且X、Y、Z相互独立,求随机变量U=(2X+3Y)(4Z-

U=(2X+3Y)(4Z-1)=8XZ-2X+12YZ-3YE(U)=8E(X)E(Z)-2E(X)+12E(Y)E(Z)-3E(Y)//:E(X)=0,E(Y)=0.5,E(Z)=5;//:N(5,

设随机变量x~N(0,1),N(1,2),且x,y相互独立,则x-2y=?

首先X-2Y还是正态分布而E(X-2Y)=E(X)-2E(Y)=0-2=-2D(X-2Y)=D(X)+(-2)²D(Y)=1+4×2=9所以X-2YN(-2,9)

设随机变量X与Y相互独立,N(1,2),(0,1),求随机变量Z=X-Y的分布,并求P(X>Y )的概率

N(1,3)P(X>Y)=P(X-Y>0)=P(Z>0)又T=Z-1/根号3~N(0,1)则原式=P(T>-1/根号3)查标准正太分布表可得到概率再问:Z~N(1,1)不是这样?

设随机变量x~N(0,1),y=2x+1,则y~N( ),求详解,

用正态分布特性计算.经济数学团队帮你解答.请及时评价.

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设随机变量X~N(0,1),Y=X²,求Y的概率密度.

X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)y≤0时,F_Y(y)=P{Y再问:X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)...这个是怎么得到的再答:

概率论与数理统计 设随机变量X~N(0,1)求,E(X^2)

D(x)=E(X^2)-[E(X)]^2=1E(X^2)=1

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

随机变量X~N(0,1),N(1,4),且相关系数为1,则( )

选C再问:为什么??再答:x=(y-1)/2呀解得y=2x+1晕了,应该选D就是随机变量的折合把Y折合成标准正态分布再问:为什么要随机变量的折合把Y折合成标准正态分布?再答:两者的相关系数是1,也就是

设随机变量X~N(1,4),则P{X

标准正态分布X~N(0,1),x在0处取得最大值,P{x再问:那要是P{X≥1},也是的0.5吗?再答:对啊,因为P{X=a}=1;连续分布取单点值的概率是0,所以说P{Xa}=1;P{X=a}=1;

设随机变量x~N(0,1),求p(x

x~N(0,1),意思是,x服从标准正态分布查表得:p(x

随机变量X~N(0,1),求下列随机变量Y=X^2的概率密度函数

思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=

已知随机变量X~N(4,1) 求P(x

=1/2.画一下正态分布的图.u就是对称轴,小于U的概率当然是总的一半,就是1/2建议多看看概念.要看懂

2、设随机变量x~N(0,1),且满足P(x

2a=03似乎没出完题目吧?

设随机变量X~N(0,1),求Y=X^2的概率密度

F(y)=P(Y再问:后面那一串上角标是怎么个意思?再答:具体点

设随机变量x~n(0,1),令y=e^-x求概率密度函数

N(0,1),y=e^(-x)y>0X的密度函数是fX(x)=1/√2π*e^(-x^2/2)那么FY(y)=P(Y0

随机变量X~U(0,1),

随机变量X服从区间(0,1)上的均匀分布