为什么当XY相互独立时有E{[X-E(X)][Y-E(Y)]=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:03:57
随机变量x与y相互独立,且他们分别在区间(-1,3)和(2,4)上服从均匀分布,则E(xy)=?

E(x)=(-1+3)/2=1,E(y)=(2+4)/2=3.而x与y相互独立,于是E(xy)=E(x)E(y)=3.

如图 设xy 是两个相互独立的随机变量 求得是D(x+y)

如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n

有没有概率高手,设XY相互独立都服从标准正态分布.令E=X+Y;n=x-y,求E(e);E(n);D(n);D(n);P

1)E(ξ)=E(X+Y)=E(X)+E(Y)=0+0=0;2)E(η)=E(X-Y)=E(X)-E(Y)=0-0=0;3)D(ξ)=E[ξ-E(ξ)]²=E[X²+2XY+Y&#

用最通俗的话形容概率论里的两两独立和相互独立.并且为什么两两独立不一定相互独立?

我觉得首先要明白,两两独立和相互独立,虽然说都是独立,它们的含义相同,但立场不同,所以就是,不一定相互独立,这是我个人的看法,大家给评价一下.再问:我已经知道了,但不是你说的。

已知随即变量XY相互独立,并且满足正态分布.求D(XY)

随极变量X,Y相互独立-->X,Y不相Z=XY-->E{Z}=E{XY}=E{X}E{Y}D(XY)=E{(Z-E(Z))^2}=E{Z^2}-E{Z}E{Z}=E{X^2}E{Y^2}-E{X}E{

数学期望中能否由E(XY)=E(X)+E(Y)推出X,Y相互独立

我记得不可以,x,y要是一个离散一个连续呢

已知随机变量X与Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=

均匀分布是我们学的重要分布的一种,一些结论性的公式最好记住;这里我给你说一下均匀分布的数值特征,E(X)=(b+a)/2D(X)=(b-a)^2/12对Xa=-1b=3对Ya=2b=4所以E(X)=1

已知随机变量X与Y相互独立,且它们分别在区间【-1,3』和【2,4】上服从均匀分布,则E(XY)=

相互独立的随机变量,有E(XY)=E(X)E(Y)E(X)=1E(Y)=3所求=3

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

X Y为两个随机变量,E(XY)=E(X)E(Y) 为什么”X Y相互独立“是错的,而“D(X+Y)=D(X)+D(Y)

证明:X,Y是两个随机变量,则有D(X+Y)=D(X)+D(Y)+2E{(X-E(X)(cov(x,y)=E{(X-E(X)(Y-E(Y))}=E{XY-XE(Y)-YE(X)+E(X)

设随机变量X与Y相互独立,且E(X)=E(Y)=1,D(X)=2,D(Y)=3,试求(1)D(X-Y) (2)D(XY)

X,Y是两个相互独立的随机变量,则D(X-Y)=D(X)+(-1)^2*D(Y)=5D(X)=E(X^2)-[E(X)]^2E(X^2)=2+1=3同理E(Y^2)=3+1=4而cov(X,Y)=0,

X,Y相互独立,X N (0,1),N(1,2) 求E(X),E(Y),E(XY),D(X),D(Y),D(Z)

瀑布汗....(X^2+Y^2)/(X^2+Y^2)=1E(1),=1

求教一道概率证明题设x y是相互独立的随机变量,证明(1)若E(X)=E(Y)=0,则D(XY)=D(X)D(Y),(2

∵X,Y相互独立,∴X^2,Y^2也相互独立(1)D(XY)=E[XY-E(XY)]^2=E(XY-EXEY)^2=E(X^2Y^2)=E(X^2)E(Y^2)=E[(X-EX)^2]E[(Y-EY)

为什么事件A,B相互独立呢?

/>∵P(A|B)=P(A|B补)∴即B发生的条件下,A发生的概率和B不发生的条件下,A发生的概率相同即A发生的概率和B是否发生没有影响,即事件A,B相互独立.

X,Y相互独立,如何证明X-E(X)与Y-E(Y)相互独立

利用定义,X,Y相互独立的充要条件是:P{X

设随机变量X,Y相互独立,且E(X)=E(Y)=1,D(X)=2,D(Y)=4,则D(XY)=______

E{[XY-E(XY)]^2}=E(X^2Y^2)-E(XY)^2=E(X^2)*E(Y^2)-E(X)^2*E(Y)^2=[D(X)+E(X)^2][D(Y)+E(Y)^2]-E(X)^2*E(Y)

随机变量XY独立,则他们的连续函数G(X)和H(Y)也相互独立.

只要证明F(G(X),H(Y))关于G(X)和H(Y)偏导数等于F(G(X)),和F(H(Y))各自关于G和H的偏导数的积就可以了,只要把各自的偏导写出来,然后代一下就有答案了.这个上面不好写,不然帮