为什么当X趋近于0时,积分f(x)dx~x?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:16:36
f(x)=(ln|x|/|x-1|)sinx为什么当X趋近于0时极限是零?

首先x-1这一项不重要,因为x->0时它有极限为1.sin(x)和x是同阶无穷小,只要说明x*ln|x|趋向于0.可以直接用洛必达法则:limx*ln|x|=lim(ln|x|)'/(1/x)'=li

f(x)=ln|x|/|x-1|sinx为什么当X趋近于0时极限是零?

相当于算ln|x|/x注意到|x|^x当x趋于0是趋于1的所以得到答案再问:还是不懂,f(x)=ln|x|/|x-1|sinx和ln|x|/x有什么关系啊?要有关系也是和ln|x|/(x-1)有关系啊

证明f(x)=/x/,当x趋近于0时,极限为0

ε任意正实数令δ=εx任意实数满足0|f(x)−0|=||x|−0|=|(|x|)|=|x|=ε根据极限定义f(x)在x趋近于0时极限为0当然分左右求也可以只不过看题目是不是要

当x趋近于0时,sin(1/x)的极限不存在,为什么?

当x趋向于0时,1/x趋向于无穷大(正无穷大和负无穷大),(无穷小量的倒数是无穷大量),观察1/x的正弦图像可知,它是一条上下波动的曲线,最大值为1,最小值为-1.也就是说当1/x趋向于无穷大时,1/

证明函数f(x)=|x|当x趋近于0时的极限为0.

方法一:f(x)是连续函数,所以当x趋近于0时的极限为f(0)=0方法二:通过定义证明比较繁琐,用一下基本不等式也能做出来任给epsilon>0,命delta=epsilon>0当|x-0|

二元函数 (xy)/(x+y)当x,y趋近于0时的极限为什么不存在?

令y=x,lim(x,y)趋于(0,0)xy/x+y=lim(x趋于0)x^2/(2x)=0令y=x^2-x,lim(x,y)趋于(0,0)xy/x+y=lim(x趋于0)x^3-x^2/x^2=-1

为什么当x趋近于0时,f(x)=2^x+3^x-2与x同阶但是非等价无穷小呢呢

f(x)/x=(2^x+3^x-2)/x用洛必达法则//x趋于0得到ln2*2^x+ln3*3^x=ln2+ln3=ln6所以显然同阶非等价

函数f(x)=ln x/x 当x趋近于0时,f(x)为多少

x趋近于0时,limf(x)=lim(1/x)/[-x^2)=lim(-x)=0再问:(⊙o⊙)…函数打错了,应为f(x)=(lnx)/x能求麽再答:我就这样做的呀?再问:可是我的参考书上利用这个函数

讨论函数f(x)=绝对值x/x.当x无限趋近于0时的极限

x->0+,f(x)=x/x=1;x->0-.f(x)=-x/x=-1;因为f(0+)!=f(0-)所以f(x)无限趋近于0时的极限不存在

f'(0)=2,当t无限趋近于0时,(f(3t)-f(t))/t无限趋近于?

由导数的定义可知,f'(0)=lim(t->0)[f(t)-f(0)]/(t-0)=lim(t->0)[f(t)-f(0)]/t,所以lim(t->0)[f(3t)-f(t)]/t=lim(t->0)

为什么当x趋近于0时,sin1/x极限不存在

当x趋向于0时,1/x趋向于无穷大(正无穷大和负无穷大),(无穷小量的倒数是无穷大量),观察1/x的正弦图像可知,它是一条上下波动的曲线,最大值为1,最小值为-1.也就是说当1/x趋向于无穷大时,1/

为什么当x趋近于0时,(1+x)^(1/x)的极限为e呢?

是x趋于无穷g(x)=(1+1/x)^x的极限是e所以令a=1/x则a趋于无穷所以(1+x)^(1/x)=(1+1/a)^a所以极限是e

证明当x趋近于0时,arctanx~x

令arctanx=tlim(arctanx/x)=lim(t/tant)=lim(t/sint)*limcost=1所以arctanx~x

为什么,当x趋近于0时,arcsinx,arctanx为无穷小量

画个Rt三角形取一个锐角设对边为1斜边为X当X趋向与0时斜边和该角的邻边无限趋向于相等该锐角也无限趋向于0所以arcsinx趋向0剩下的那个自己想想吧什么东西都不能讲得太明白了要不就没意思了!另当角度

为什么当x趋近于0时答案等于1/e

lim(x-->0)(1-x)^(1/x)令x=1/n,n-->∞原式=lim(n-->∞)(1-1/n)^(-n*[-1])=e^(-1)=1/e

为什么当x趋近于0时,函数f(x)=cosx有极限存在,且极限值为1,而当x趋近于∞时,其极限不存在?

因为x趋近于0时,函数趋近的值是可以确定的x趋近于无穷大时,函数趋近的值你无法确定因为函数是在R上的周期函数

f(x)当x趋近于x.时的左右极限分别为:f(x.+0)=limf(x)=A,为什么要加零

极限有左右之分,因为有些函数只有其中一个.而f(X.+0)是表示求的极限是右极限,f(X.-0)=limf(X)表示求的左极限.

为什么sinx除以x(当x趋近于0时)极限为1?

当x趋近于0时,由无穷小可知,sinx=x,所以原式极限为1

为什么当x趋近于0时,f(x)=2^x+3^x-2与x同阶但是非等价无穷小呢

因为f(x)/x=(2^x-1)/x+(3^x-1)/x极限为ln2+ln3=ln6,而非1,等于1就是等价无穷小.